Transdermal Optical Wireless Links with Multiple Receivers in the Presence of Skin-Induced Attenuation and Pointing Errors
Abstract
:1. Introduction
2. System Model
2.1. Signal Model
2.2. Generalized Pointing Errors Model with Non-Zero Boresight
2.3. Joint Impact of Skin-Induced Attenuation and NZB Pointing Errors
3. ABER Analysis of the SISO TOW Link
3.1. SISO TOW Link with IM/DD OOK
3.2. SISO TOW Link with IM/DD L-PPM
4. ABER for SIMO TOW Systems with Receivers’ Diversity
4.1. SIMO TOW System with IM/DD OOK
4.2. SIMO TOW System with IM/DD L-PPM
5. Numerical Results
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Abualhoul, M.Y.; Svenmarker, P.; Wang, Q.; Andersson, J.Y.; Johansson, A.J. Free space optical link for biomedical applications. In Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, USA, 28 August–1 September 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 1667–1670. [Google Scholar]
- Varotsos, G.K.; Nistazakis, H.E.; Petkovic, M.I.; Djordjevic, G.T.; Tombras, G.S. SIMO Optical Wireless Links with Nonzero Boresight Pointing Errors over M modeled Turbulence Channels. Elsevier Opt. Commun. 2017, 403, 391–400. [Google Scholar] [CrossRef]
- Varotsos, G.K.; Stassinakis, A.N.; Nistazakis, H.E.; Tsigopoulos, A.D.; Peppas, K.P.; Aidinis, C.J.; Tombras, G.S. Probability of fade estimation for FSO links with time dispersion and turbulence modeled with the gamma–gamma or the IK distribution. Opt. Int. J. Light Electron Opt. 2014, 125, 7191–7197. [Google Scholar] [CrossRef]
- Varotsos, G.K.; Nistazakis, H.E.; Volos, C.K.; Tombras, G.S. FSO links with diversity pointing errors and temporal broadening of the pulses over weak to strong atmospheric turbulence channels. Opt. Int. J. Light Electron Opt. 2016, 127, 3402–3409. [Google Scholar] [CrossRef]
- Henniger, H.; Wilfert, O. An Introduction to Free Space Optical Communications. Radioengineering 2010, 19, 203–212. [Google Scholar]
- Majumdar, A.K.; Arun, K. Advanced Free Space Optics (FSO); Springer: Berlin/Heidelberg, Germany, 2015; p. 397. [Google Scholar]
- Farid, A.A.; Hranilovic, S. Outage capacity optimization for free space optical links with pointing errors. IEEE/OSA J. Lightwave Technol. 2007, 25, 1702–1710. [Google Scholar] [CrossRef]
- Hogan, H. Data Demands: Drive Free-Space Optics. Photonics Spectra 2013, 47, 38–41. [Google Scholar]
- Ghassemlooy, Z.; Arnon, S.; Uysal, M.; Xu, Z.; Cheng, J. Emerging optical wireless communications-advances and challenges. IEEE J. Sel. Areas Commun. 2015, 33, 1738–1749. [Google Scholar] [CrossRef]
- Awan, M.S.; Csurgai-Horváth, L.; Muhammad, S.S.; Leitgeb, E.; Nadeem, F.; Khan, M.S. Characterization of Fog and Snow Attenuations for Free-Space Optical Propagation. JCM 2009, 4, 533–545. [Google Scholar] [CrossRef]
- Kedar, D.; Arnon, S. Urban Optical Wireless Communication Networks: The Main Challenges and Possible Solutions. IEEE Commun. Mag. 2004, 42, S2–S7. [Google Scholar] [CrossRef]
- Khalighi, M.A.; Uysal, M. Survey on free space optical communication: A communication theory perspective. IEEE Commun. Surv. Tutor. 2014, 16, 2231–2258. [Google Scholar] [CrossRef]
- Nistazakis, H.E.; Katsis, A.; Tombras, G.S. On the Reliability and Performance of FSO and Hybrid FSO Communication Systems over Turbulent Channels. In Turbulence: Theory, Types and Simulation; Series Physics Research and Technology; Marcuso, R.J., Ed.; Nova Publishers: Hauppauge, NY, USA, 2012; ISBN 978-1-61761-735-5. [Google Scholar]
- Gil, Y.; Rotter, N.; Arnon, S. Feasibility of retroreflective transdermal optical wireless communication. Appl. Opt. 2012, 51, 4232–4239. [Google Scholar] [CrossRef] [PubMed]
- Chapin, J.K.; Moxon, K.A.; Markowitz, R.S.; Nicolelis, M.A. Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex. Nat. Neurosci. 1999, 2, 664–670. [Google Scholar] [CrossRef] [PubMed]
- Serruya, M.D.; Hatsopoulos, N.G.; Paninski, L.; Fellows, M.R.; Donoghue, J.P. Brain-machine interface: Instant neural control of a movement signal. Nature 2002, 416, 141–142. [Google Scholar] [CrossRef] [PubMed]
- Smith, B.; Tang, Z.; Johnson, M.W.; Pourmehdi, S.; Gazdik, M.M.; Buckett, J.R.; Peckham, P.H. An externally powered, multichannel, implantable stimulator-telemeter for control of paralyzed muscle. IEEE Trans. Biomed. Eng. 1998, 45, 463–475. [Google Scholar] [CrossRef] [PubMed]
- Gheewala, T.R.; Melen, R.D.; White, R.L. A CMOS implantable multielectrode auditory stimulator for the deaf. IEEE J. Solid State Circuits 1975, 10, 472–479. [Google Scholar] [CrossRef]
- Liu, T.; Bihr, U.; Anis, S.M.; Ortmanns, M. Optical transcutaneous link for low power, high data rate telemetry. In Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), San Diego, CA, USA, 28 August–1 September 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 3535–3538. [Google Scholar]
- Ghovanloo, M.; Najafi, K. A wideband frequency-shift keying wireless link for inductively powered biomedical implants. IEEE Trans. Circuits Syst. I Regul. Pap. 2004, 51, 2374–2383. [Google Scholar] [CrossRef]
- Mohseni, P.; Najafi, K.; Eliades, S.J.; Wang, X. Wireless multichannel biopotential recording using an integrated FM telemetry circuit. IEEE Trans. Neural Syst. Rehabil. Eng. 2005, 13, 263–271. [Google Scholar] [CrossRef]
- Neihart, N.M.; Harrison, R.R. A low-power FM transmitter for use in neural recording applications. In Proceeding of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Francisco, CA, USA, 1–5 September 2004; IEEE: Piscataway, NJ, USA, 2004; Volume 1, pp. 2117–2120. [Google Scholar]
- Miranda, H.; Gilja, V.; Chestek, C.A.; Shenoy, K.V.; Meng, T.H. HermesD: A high-rate long-range wireless transmission system for simultaneous multichannel neural recording applications. IEEE Trans. Biomed. Circuits Syst. 2010, 4, 181–191. [Google Scholar] [CrossRef] [PubMed]
- Charles, C.T. Wireless data links for biomedical implants: Current research and future directions. In Proceedings of the Biomedical Circuits and Systems Conference BIOCAS 2007, Montreal, QC, Canada, 27–30 November 2007; IEEE: Piscataway, NJ, USA, 2007; pp. 13–16. [Google Scholar]
- Chae, M.; Liu, W.; Yang, Z.; Chen, T.; Kim, J.; Sivaprakasam, M.; Yuce, M. A 128-channel 6mw wireless neural recording ic with on-the-fly spike sorting and uwb tansmitter. In Proceeding of the Solid-State Circuits Conference, San Francisco, CA, USA, 3–7 February 2008; IEEE: Piscataway, NJ, USA, 2018. [Google Scholar]
- Schwartz, A.B. Cortical neural prosthetics. Annu. Rev. Neurosci. 2004, 27, 487–507. [Google Scholar] [CrossRef]
- Hochberg, L.R.; Serruya, M.D.; Friehs, G.M.; Mukand, J.A.; Saleh, M.; Caplan, A.H.; Branner, A.; Chen, D.; Penn, R.D.; Donoghue, J.P. Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 2006, 442, 164. [Google Scholar] [CrossRef]
- Abita, J.L.; Schneider, W. Transdermal optical Communications; John Hopkins APL Tech: Laurel, MD, USA, 2004; Volume 25, pp. 261–268. [Google Scholar]
- Liu, T.; Bihr, U.; Becker, J.; Anders, J.; Ortmanns, M. In vivo verification of a 100 Mbps transcutaneous optical telemetric link. In Proceedings of the Biomedical Circuits and Systems Conference (BioCAS), Lausanne, Switzerland, 22–24 October 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 580–583. [Google Scholar]
- Ritter, R.; Handwerker, J.; Liu, T.; Ortmanns, M. Telemetry for implantable medical devices: Part 1-Media properties and standards. IEEE Solid State Circuits Mag. 2014, 6, 47–51. [Google Scholar] [CrossRef]
- Liu, T.; Anders, J.; Ortmanns, M. System level model for transcutaneous optical telemetric link. In Proceedings of the 2013 IEEE International Symposium on Circuits and Systems (ISCAS), Beijing, China, 19–23 May 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 865–868. [Google Scholar]
- Ackermann, D.M.; Smith, B.; Kilgore, K.L.; Peckham, P.H. Design of a high speed transcutaneous optical telemetry link. In Proceedings of the 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, New York, NY, USA, 30 August–3 September 2006; IEEE: Piscataway, NJ, USA, 2006; pp. 2932–2935. [Google Scholar]
- Ackermann, D.M.; Smith, B.; Wang, X.F.; Kilgore, K.L.; Peckham, P.H. Designing the optical interface of a transcutaneous optical telemetry link. IEEE Trans. Biomed. Eng. 2008, 55, 1365–1373. [Google Scholar] [CrossRef] [PubMed]
- Yoon, Y.H.; Jung, E.S.; Song, B.S.; Lee, S.H.; Cho, J.H. Design of a transcutaneous infrared remote control for the totally implantable middle ear system. IEICE Trans. Electron. 2005, 88, 1896–1899. [Google Scholar] [CrossRef]
- Parmentier, S.; Fontaine, R.; Roy, Y. Laser diode used in 16 Mb/s, 10 mW optical transcutaneous telemetry system. In Proceedings of the Biomedical Circuits and Systems Conference, BioCAS, Baltimore, MD, USA, 20–22 November 2008; IEEE: Piscataway, NJ, USA, 2008; pp. 377–380. [Google Scholar]
- Trevlakis, S.E.; Boulogeorgos, A.A.A.; Karagiannidis, G.K. On the impact of misalignment fading in transdermal optical wireless communications. In Proceedings of the 7th International Conference on Modern Circuits and Systems Technologies (MOCAST), Thessaloniki, Greece, 7–9 May 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–4. [Google Scholar]
- Trevlakis, S.E.; Boulogeorgos, A.A.A.; Karagiannidis, G.K. Outage Performance of Transdermal Optical Wireless Links in the Presence of Pointing Errors. In Proceedings of the 2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Kalamata, Greece, 25–28 June 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–5. [Google Scholar]
- Trevlakis, S.; Boulogeorgos, A.A.; Karagiannidis, G. Signal Quality Assessment for Transdermal Optical Wireless Communications under Pointing Errors. Technologies 2018, 6, 109. [Google Scholar] [CrossRef]
- Varotsos, G.K.; Nistazakis, H.E.; Tombras, G.S.; Aidinis, K.; Jaber, F.; Rahman, M. On the use of diversity in transdermal optical wireless links with nonzero boresight pointing errors for outage performance estimation. In Proceedings of the 2018 7th International Conference on Modern Circuits and Systems Technologies (MOCAST), Thessaloniki, Greece, 7–9 May 2018; IEEE: Piscataway, NJ, USA, 2019. in press. [Google Scholar]
- Lange, S.; Xu, H.; Lang, C.; Pless, H.; Becker, J.; Tiedkte, H.J.; Hennig, E.; Ortmanns, M. An AC-powered optical receiver consuming 270μW for transcutaneous 2Mb/s data transfer. In Proceedings of the 2011 IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 20–24 February 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 304–306. [Google Scholar]
- Yang, F.; Cheng, J.; Tsiftsis, T.A. Free-space optical communication with nonzero boresight pointing errors. IEEE Trans. Commun. 2014, 62, 713–725. [Google Scholar] [CrossRef]
- Boluda-Ruiz, R.; García-Zambrana, A.; Castillo-Vazquez, C.; Castillo-Vazquez, B. Novel approximation of misalignment fading modeled by Beckmann distribution on free-space optical links. Opt. Express 2016, 24, 22635–22649. [Google Scholar] [CrossRef] [PubMed]
- Varotsos, G.K.; Nistazakis, H.E.; Tombras, G.S. OFDM RoFSO Links with Relays Over Turbulence Channels and Nonzero Boresight Pointing Errors. J. Commun. 2017, 12, 644–658. [Google Scholar] [CrossRef]
- Varotsos, G.K.; Nistazakis, H.E.; Gappmair, W.; Sandalidis, H.G.; Tombras, G.S. DF Relayed Subcarrier FSO Links over Malaga Turbulence Channels with Phase Noise and Non-Zero Boresight Pointing Errors. Appl. Sci. 2018, 8, 2076–3417. [Google Scholar] [CrossRef]
- Varotsos, G.K.; Nistazakis, H.E.; Stassinakis, A.N.; Volos, C.K.; Christofilakis, V.; Tombras, G.S. Mixed Topology of DF Relayed Terrestrial Optical Wireless Links with Generalized Pointing Errors over Turbulence Channels. Technologies 2018, 6, 121. [Google Scholar] [CrossRef]
- Varotsos, G.K.; Nistazakis, H.E.; Gappmair, W.; Sandalidis, H.G.; Tombras, G.S. SIMO subcarrier PSK FSO links with phase noise and non-zero boresight pointing errors over turbulence channels. IET Commun. 2019, 3, 831–836. [Google Scholar] [CrossRef]
- Navidpour, S.M.; Uysal, M.; Kavehrad, M. BER performance of free-space optical transmission with spatial diversity. IEEE Trans. Wirel. Commun. 2007, 6, 2813–2819. [Google Scholar] [CrossRef]
- Xu, F.; Khalighi, A.; Caussé, P.; Bourennane, S. Channel coding and time-diversity for optical wireless links. Opt. Express 2009, 17, 872–887. [Google Scholar] [CrossRef] [PubMed]
- Rachmani, R.; Arnon, S. Wavelength diversity in turbulence channels for sensor networks. In Proceedings of the 2010 IEEE 26th Convention of Electrical and Electronics Engineers in Israel (IEEEI), Eliat, Israel, 17–20 Novmber 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 915–918. [Google Scholar]
- Tsiftsis, T.A.; Sandalidis, H.G.; Karagiannidis, G.K.; Uysal, M. Optical wireless links with spatial diversity over strong atmospheric turbulence channels. IEEE Trans. Wirel. Commun. 2009, 8, 951–957. [Google Scholar] [CrossRef] [Green Version]
- Nistazakis, H.E.; Tombras, G.S. On the use of wavelength and time diversity in optical wireless communication systems over gamma–gamma turbulence channels. Opt. Laser Technol. 2012, 44, 2088–2094. [Google Scholar] [CrossRef]
- Nistazakis, H.E. A time-diversity scheme for wireless optical links over exponentially modeled turbulence channels. Opt. Int. J. Light Electron Opt. 2013, 124, 1386–1391. [Google Scholar] [CrossRef]
- Garcia-Zambrana, A.; Boluda-Ruiz, R.; Castillo-Vazquez, C.; Castillo-Vazquez, B. Transmit alternate laser selection with time diversity for FSO communications. Opt. Express 2014, 22, 23861–23874. [Google Scholar] [CrossRef] [PubMed]
- Prabu, K.; Cheepalli, S.; Kumar, D.S. Analysis of PolSK based FSO system using wavelength and time diversity over strong atmospheric turbulence with pointing errors. Opt. Commun. 2014, 324, 318–323. [Google Scholar] [CrossRef]
- Gappmair, W.; Hranilovic, S.; Leitgeb, E. Performance of PPM on terrestrial FSO links with turbulence and pointing errors. IEEE Commun. Lett. 2010, 14, 468–470. [Google Scholar] [CrossRef]
- Manea, V.; Dragomir, R.; Puscoci, S. OOK and PPM modulations effects on bit error rate in terrestrial laser transmissions. Telecomunicat II Anul. LIV 2011, 2, 55–61. [Google Scholar]
- Elganimi, T.Y. Performance comparison between OOK, PPM and pam modulation schemes for free space optical (FSO) communication systems: Analytical study. Int. J. Comput. Appl. 2013, 79, 22–27. [Google Scholar]
- Boluda-Ruiz, R.; Garcia-Zambrana, A.; Castillo-Vazquez, B.; Castillo-Vazquez, C. Impact of nonzeroboresight pointing error on ergodic capacity of MIMO FSO communication systems. Opt. Express 2016, 24, 3513–3534. [Google Scholar] [CrossRef] [PubMed]
- Gradshteyn, I.S.; Ryzhik, I.M. Table of Integrals, Series, and Products, 6th ed.; Academic: New York, NY, USA, 2000. [Google Scholar]
- Helstrom, C.W. Probability and Stochastic Processes for Engineers; Macmillan Coll Division: London, UK, 1991. [Google Scholar]
- Ijaz, M.; Ghassemlooy, Z.; Ansari, S.; Adebanjo, O.; Le Minh, H.; Rajbhandari, S.; Gholami, A. Experimental investigation of the performance of different modulation techniques under controlled FSO turbulence channel. In Proceedings of the 5th International Symposium on Telecommunications (IST2010), Tehran, Iran, 4–6 December 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 59–64. [Google Scholar]
- Al-Habash, M.A.; Andrews, L.C.; Phillips, R.L. Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media. Opt. Eng. 2001, 40, 1554–1562. [Google Scholar] [CrossRef]
- The Wolfarm Functions Site. 2008. Available online: http:/functions.wolfarm.com (accessed on 22 May 2019).
- Audeh, M.D.; Kahn, J.M. Performance evaluation of L-pulse-position modulation on non-directed indoor infrared channels. In Proceedings of the IEEE International Conference on Communications, ICC’94, SUPERCOMM/ICC’94, Conference Record, Serving Humanity Through Communications, New Orleans, LA, USA, 1–5 May 1994; IEEE: Piscataway, NJ, USA, 1994. [Google Scholar]
- Chiani, M.; Dardari, D.; Simon, M.K. New exponential bounds and approximations for the computation of error probability in fading channels. Trans. Wirel. Commun. 2003, 2, 840–845. [Google Scholar] [CrossRef]
- Alouini, M.S.; Simon, M.K. An MGF-based performance analysis of generalized selection combining over Rayleigh fading channels. IEEE Trans. Commun. 2000, 48, 401–415. [Google Scholar] [CrossRef]
i | ai | bi | ci |
---|---|---|---|
1 | 10 | 0.35 | 0.065 |
2 | 4.5 | 0.42 | 0.25 |
3 | 13.48 | −1.5 | 50.12 |
4 | 14.7 | 1442 | 49.35 |
5 | 7.435 | 1499 | 75.88 |
6 | 48 | 3322 | 1033 |
7 | 594.1 | −183 | 285.9 |
8 | 11.47 | −618.5 | 1054 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varotsos, G.K.; Nistazakis, H.E.; Aidinis, K.; Jaber, F.; Rahman, K.K.M. Transdermal Optical Wireless Links with Multiple Receivers in the Presence of Skin-Induced Attenuation and Pointing Errors. Computation 2019, 7, 33. https://doi.org/10.3390/computation7030033
Varotsos GK, Nistazakis HE, Aidinis K, Jaber F, Rahman KKM. Transdermal Optical Wireless Links with Multiple Receivers in the Presence of Skin-Induced Attenuation and Pointing Errors. Computation. 2019; 7(3):33. https://doi.org/10.3390/computation7030033
Chicago/Turabian StyleVarotsos, George K., Hector E. Nistazakis, Konstantinos Aidinis, F. Jaber, and K.K. Mujeeb Rahman. 2019. "Transdermal Optical Wireless Links with Multiple Receivers in the Presence of Skin-Induced Attenuation and Pointing Errors" Computation 7, no. 3: 33. https://doi.org/10.3390/computation7030033
APA StyleVarotsos, G. K., Nistazakis, H. E., Aidinis, K., Jaber, F., & Rahman, K. K. M. (2019). Transdermal Optical Wireless Links with Multiple Receivers in the Presence of Skin-Induced Attenuation and Pointing Errors. Computation, 7(3), 33. https://doi.org/10.3390/computation7030033