Correlation between Computed Ion Hydration Properties and Experimental Values of Sugar Transfer through Nanofiltration and Ion Exchange Membranes in Presence of Electrolyte
Abstract
:1. Introduction
2. Materials and Methods
2.1. Computational Details
2.2. Experimental Conditions
3. Results and Discussion
3.1. Ion Hydration Properties
3.2. Hydration Energy vs. Experimental Sugars Fluxes through NF or IE Membranes
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Van der Bruggen, B. Membrane Technology; Major Reference Works; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2017; ISBN 9780471238966. [Google Scholar]
- Noble, R.D.; Stern, A.S. Membrane Separations Technology Principles and Applications; Elsevier: Amsterdam, The Netherlands, 1995; Volume 2, ISBN 0927-5193. [Google Scholar]
- Nunes, S.P.; Peinemann, K. Membrane Technology: In the Chemical Industry; Nunes, S.P., Peinemann, K.-V., Eds.; Wiley-VCH Verlag GmbH: Weinheim, Germany, 2001; ISBN 3527284850. [Google Scholar]
- Strathmann, H. Electrodialysis, a mature technology with a multitude of new applications. Desalination 2010, 264, 268–288. [Google Scholar] [CrossRef]
- Boy, V.; Roux-de Balmann, H.; Galier, S. Relationship between volumetric properties and mass transfer through NF membrane for saccharide/electrolyte systems. J. Membr. Sci. 2012, 390, 254–262. [Google Scholar] [CrossRef] [Green Version]
- Galier, S.; Savignac, J.; Roux-de Balmann, H. Influence of the ionic composition on the diffusion mass transfer of saccharides through a cation-exchange membrane. Sep. Purif. Technol. 2013, 109, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Bargeman, G.; Vollenbroek, J.M.; Straatsma, J.; Schroën, C.G.P.H.; Boom, R.M. Nanofiltration of multi-component feeds. Interactions between neutral and charged components and their effect on retention. J. Memb. Sci. 2005, 247, 11–20. [Google Scholar] [CrossRef]
- Wang, X.-L.; Zhang, C.; Ouyang, P. The possibility of separating saccharides from a NaCl solution by using nanofiltration in diafiltration mode. J. Membr. Sci. 2002, 204, 271–281. [Google Scholar] [CrossRef]
- Han, L.; Galier, S.; Roux-de Balmann, H. Transfer of neutral organic solutes during desalination by electrodialysis: Influence of the salt composition. J. Membr. Sci. 2016, 511, 207–218. [Google Scholar] [CrossRef]
- Bouranene, S.; Szymczyk, A.; Fievet, P.; Vidonne, A. Influence of inorganic electrolytes on the retention of polyethyleneglycol by a nanofiltration ceramic membrane. J. Membr. Sci. 2007, 290, 216–221. [Google Scholar] [CrossRef]
- Bouchoux, A.; Balmann, H.; Lutin, F. Nanofiltration of glucose and sodium lactate solutionsVariations of retention between single- and mixed-solute solutions. J. Membr. Sci. 2005, 258, 123–132. [Google Scholar] [CrossRef] [Green Version]
- Fuoco, A.; Zwijnenberg, H.; Galier, S.; Balmann, H.R.; De Luca, G. Structural properties of cation exchange membranes: Characterization, electrolyte effect and solute transfer. J. Membr. Sci. 2016, 520, 45–53. [Google Scholar] [CrossRef]
- Fuoco, A.; Galier, S.; Roux-de Balmann, H.; De Luca, G. Correlation between macroscopic sugar transfer and nanoscale interactions in cation exchange membranes. J. Membr. Sci. 2015, 493, 311–320. [Google Scholar] [CrossRef]
- Zhou, J.; Lu, X.; Wang, Y.; Shi, J. Molecular dynamics study on ionic hydration. Fluid Phase Equilib. 2002, 194–197, 257–270. [Google Scholar] [CrossRef]
- Tongraar, A.; Michael Rode, B. The hydration structures of F− and Cl− investigated by ab initio QM/MM molecular dynamics simulations. Phys. Chem. Chem. Phys. 2003, 5, 357–362. [Google Scholar] [CrossRef]
- Bryantsev, V.S.; Diallo, M.S.; van Duin, A.C.T.; Goddard, W.A. Evaluation of B3LYP, X3LYP, and M06-Class Density Functionals for Predicting the Binding Energies of Neutral, Protonated, and Deprotonated Water Clusters. J. Chem. Theory Comput. 2009, 5, 1016–1026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Luca, G.; Gugliuzza, A.; Drioli, E. Competitive hydrogen-bonding interactions in modified polymer membranes: A density functional theory investigation. J. Phys. Chem. B 2009, 113, 5473–5477. [Google Scholar] [CrossRef] [PubMed]
- Ireta, J.; Neugebauer, J.; Scheffler, M. On the Accuracy of DFT for Describing Hydrogen Bonds: Dependence on the Bond Directionality. J. Phys. Chem. A 2004, 108, 5692–5698. [Google Scholar] [CrossRef]
- Valiev, M.; Bylaska, E.J.; Govind, N.; Kowalski, K.; Straatsma, T.P.; Dam, H.J.J. Van; Wang, D.; Nieplocha, J.; Apra, E.; Windus, T.L.; et al. De NWChem: A comprehensive and scalable open-source solution for large scale molecular simulations. Comput. Phys. Commun. 2010, 181, 1477–1489. [Google Scholar] [CrossRef]
- Fuoco, A. Computational and Experimental Studies on Membrane-Solute Interactions in Desalination Systems Using Ion-Exchange Membranes; Université Paul Sabatier: Toulouse, France, 2015. [Google Scholar]
- Barkaline, V.V.; Douhaya, Y.V.; Tsakalof, A. Computer simulation based selection of optimal monomer for imprinting of tri-O-acetiladenosine in polymer matrix: Vacuum calculations. J. Mol. Model. 2013, 19, 359–369. [Google Scholar] [CrossRef] [PubMed]
- Pavlov, M.; Siegbahn, P.E.M.; Sandstrom, M. Hydration of Beryllium, Magnesium, Calcium, and Zinc Ions Using Density Functional Theory. J. Phys. Chem. A 1998, 102, 219–228. [Google Scholar] [CrossRef]
- Davidson, E.R.; Chakravorty, S.J. A possible definition of basis set superposition error. Chem. Phys. Lett. 1994, 217, 48–54. [Google Scholar] [CrossRef]
- Szabo, A.; Ostlund, N.S. Modern Quantum Chemistry Introduction to Advanced Electronic Structure Theory; McGraw-Hill: New York, NY, USA, 1989; reprinted by Dover publications: Mineola, NY, USA, 1996. [Google Scholar]
- Cappa, C.D.; Smith, J.D.; Wilson, K.R.; Messer, B.M.; Gilles, M.K.; Cohen, R.C.; Saykally, R.J. Effects of Alkali Metal Halide Salts on the Hydrogen Bond Network of Liquid Water. J. Phys. Chem. B 2005, 109, 7046–7052. [Google Scholar] [CrossRef] [PubMed]
- Gugliuzza, A.; Luca, G. De; Tocci, E.; Lorenzo, L. De; Drioli, E. Intermolecular interactions as controlling factor for water sorption into polymer membranes. J. Phys. Chem. B 2007, 111, 8868–8878. [Google Scholar] [CrossRef] [PubMed]
- Persson, I. Hydrated metal ions in aqueous solution: How regular are their structures? Pure Appl. Chem. 2010, 82, 1901–1917. [Google Scholar] [CrossRef]
- Karlstrom, G.O. Anders A Combined Quantum Chemical Statistical Mechanical Simulation of the Hydration of Li+, Na+, F−, and Cl−. J. Phys. Chem. B 2004, 108, 8452–8459. [Google Scholar]
- Ikeda, T.; Boero, M.; Terakura, K. Hydration properties of magnesium and calcium ions from constrained first principles molecular dynamics. J. Chem. Phys. 2007, 127, 074503. [Google Scholar] [CrossRef] [PubMed]
- Musinu, A.; Paschina, G.; Piccaluga, G. On the structure of the NH+4 ion in aqueous solution. Chem. Phys. Lett. 1981, 80, 163–167. [Google Scholar] [CrossRef]
- Marcus, Y. Ion Properties; CRC Press: New York, NY, USA, 1997. [Google Scholar]
- Mezei, M.; Beveridge, D.L. Monte Carlo studies of the structure of dilute aqueous sclutions of Li+, Na+, K+, F−, and Cl−. J. Chem. Phys. 1981, 74, 6902. [Google Scholar] [CrossRef]
- Grabowski, S.J.; Sokalski, W.A.; Dyguda, E.; Leszczyn, J. Quantitative Classification of Covalent and Noncovalent H-Bonds. J. Phys. Chem. B 2006, 110, 6444–6446. [Google Scholar] [CrossRef] [PubMed]
- Burda, J.V.; Pavelka, M.; Šimánek, M. Theoretical model of copper Cu(I)/Cu(II) hydration. DFT and ab initio quantum chemical study. J. Mol. Struct. THEOCHEM 2004, 683, 183–193. [Google Scholar] [CrossRef]
- Marcus, Y. The Thermodynamics of Solvation of Ions. Part 2. The Enthalpy of Hydration at 298.15 K. J. Chem. Soc. Faraday Trans. 1987, 83, 339–349. [Google Scholar] [CrossRef]
- Pedruzzi, I.; Borges da Silva, E.A.; Rodrigues, E.A. Selection of resins, equilibrium and sorption kinetics of lactobionic acid, fructose, lactose and sorbitol. Sep. Purif. Technol. 2008, 63, 600–611. [Google Scholar] [CrossRef]
- Nobre, C.; Santos, M.J.; Dominguez, A.; Torres, D.; Rocha, O.; Peres, A.M.; Rocha, I.; Ferreira, E.C.; Teixeira, J.A.; Rodrigues, L.R. Comparison of adsorption equilibrium of fructose, glucose and sucrose on potassium gel-type and macroporous sodium ion-exchange resins. Anal. Chim. Acta 2009, 654, 71–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Na+ | Mg2+ | Ca2+ | SO42− | Cl− | |
---|---|---|---|---|---|
CN | 5–6 | 5–6 | 7–8 | ≈10–11 | 6 |
CNref | 6 [27], 5.85 [28] | 6 [27], 5.1, 6.0 [29] | 8 [27], 4.8–8.2 [29] | 11.2 [30] | 6.25 [28] |
d(Å) | 2.40 | 2.09 | 2.52 | 1.91 | 2.40 |
dref(Å) | 2.43 [27] | 2.10 [27], 2.07 [26], 2.13, 2.07 [29] | 2.46 [27], 2.35 [26], 2.42, 2.52 [29] | n.a. | 2.24–2.42 [15] |
NH | 5–6 | 11–12 | 10–11 | 12–13 | 7–8 |
NH ref | 6.5 [31], 5.97 [32] | 11.7 [31] | 10.4 [31] | 3.9 [31], 12 [33], <13 [33] | 5.3 [31], 8.36 [27], 4–9 [34] |
ΔEiw (kcal mol−1) | −99 | −446 | −342 | −215 | −70 |
ΔH (kcal mo−1l) | −99 [35] | −465 [35] | −382 [35] | −247 [35] | −87 [35] |
Cation (CMX) | ||||
Counter-ion (b) | JNa+/Jb (Xylose) | JNa+/Jb (Glucose) | JNa+/Jb (Sucrose) | |
Ca2+ | 1.72 | 1.33 | 1.45 | 1.66 |
Mg2+ | 2.25 | 2.22 | 2.28 | 2.50 |
Anions (AMX) | ||||
Counter-ion (b) | JCl−/Jb (Xylose) | JCl−/Jb (Glucose) | JCl−/Jb (Sucrose) | |
SO42− | 1.51 | 1.11 | 1.2 | 1.42 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fuoco, A.; Galier, S.; Roux-de Balmann, H.; De Luca, G. Correlation between Computed Ion Hydration Properties and Experimental Values of Sugar Transfer through Nanofiltration and Ion Exchange Membranes in Presence of Electrolyte. Computation 2018, 6, 42. https://doi.org/10.3390/computation6030042
Fuoco A, Galier S, Roux-de Balmann H, De Luca G. Correlation between Computed Ion Hydration Properties and Experimental Values of Sugar Transfer through Nanofiltration and Ion Exchange Membranes in Presence of Electrolyte. Computation. 2018; 6(3):42. https://doi.org/10.3390/computation6030042
Chicago/Turabian StyleFuoco, Alessio, Sylvain Galier, Hélène Roux-de Balmann, and Giorgio De Luca. 2018. "Correlation between Computed Ion Hydration Properties and Experimental Values of Sugar Transfer through Nanofiltration and Ion Exchange Membranes in Presence of Electrolyte" Computation 6, no. 3: 42. https://doi.org/10.3390/computation6030042
APA StyleFuoco, A., Galier, S., Roux-de Balmann, H., & De Luca, G. (2018). Correlation between Computed Ion Hydration Properties and Experimental Values of Sugar Transfer through Nanofiltration and Ion Exchange Membranes in Presence of Electrolyte. Computation, 6(3), 42. https://doi.org/10.3390/computation6030042