Singularly Perturbed Forward-Backward Stochastic Differential Equations: Application to the Optimal Control of Bilinear Systems
Abstract
:1. Introduction
1.1. Set-Up and Problem Statement
1.2. Outline
2. Singularly Perturbed Bilinear Control Systems
From Stochastic Control to Forward-Backward Stochastic Differential Equations
3. Model Reduction
3.1. Interpretation as an Optimal Control Problem
3.2. Convergence of the Control Value
- is controllable, and the range of is a subspace of .
- The matrix is Hurwitz (i.e., its spectrum lies entirely in the open left complex half-plane) and the matrix pair is controllable.
- The driver of the FBSDE (15) is continuous and quadratically growing in Z.
3.3. Formal Derivation of the Limiting FBSDE
4. Numerical Studies
4.1. Numerical FBSDE Discretisation
4.2. Least-Squares Solution of the Backward SDE
4.3. Numerical Example
4.4. Discussion
5. Conclusions and Outlook
Author Contributions
Funding
Conflicts of Interest
Appendix A. Proofs and Technical Lemmas
Appendix A.1. Poisson Equation Lemma
Appendix A.2. Convergence of the Value Function
References
- Fleming, W.H.; Mete Soner, H. Controlled Markov Processes and Viscosity Solutions, 2nd ed.; Springer: New York, NY, USA, 2006. [Google Scholar]
- Stengel, F.R. Optimal Control and Estimation; Dover Books on Advanced Mathematics; Dover Publications: New York, NY, USA, 1994. [Google Scholar]
- Dupuis, P.; Spiliopoulos, K.; Wang, H. Importance sampling for multiscale diffusions. Multiscale Model. Simul. 2012, 10, 1–27. [Google Scholar] [CrossRef]
- Dupuis, P.; Wang, H. Importance sampling, large deviations, and differential games. Stoch. Rep. 2004, 76, 481–508. [Google Scholar] [CrossRef]
- Davis, M.H.; Norman, A.R. Portfolio selection with transaction costs. Math. Oper. Res. 1990, 15, 676–713. [Google Scholar] [CrossRef]
- Pham, H. Continuous-Time Stochastic Control and Optimization with Financial Applications; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Hartmann, C.; Schütte, C. Efficient rare event simulation by optimal nonequilibrium forcing. J. Stat. Mech. Theor. Exp. 2012, 2012, 11004. [Google Scholar] [CrossRef]
- Schütte, C.; Winkelmann, S.; Hartmann, C. Optimal control of molecular dynamics using markov state models. Math. Program. Ser. B 2012, 134, 259–282. [Google Scholar] [CrossRef]
- Asplund, E.; Klüner, T. Optimal control of open quantum systems applied to the photochemistry of surfaces. Phys. Rev. Lett. 2011, 106, 140404. [Google Scholar] [CrossRef] [PubMed]
- Steinbrecher, A. Optimal Control of Robot Guided Laser Material Treatment. In Progress in Industrial Mathematics at ECMI 2008; Fitt, A.D., Norbury, J., Ockendon, H., Wilson, E., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 501–511. [Google Scholar]
- Zhang, W.; Wang, H.; Hartmann, C.; Weber, M.; Schütte, C. Applications of the cross-entropy method to importance sampling and optimal control of diffusions. SIAM J. Sci. Comput. 2014, 36, A2654–A2672. [Google Scholar] [CrossRef]
- Antoulas, A.C. Approximation of Large-Scale Dynamical Systems; SIAM: Philadelphia, PA, USA, 2005. [Google Scholar]
- Baur, U.; Benner, P.; Feng, L. Model order reduction for linear and nonlinear systems: A system-theoretic perspective. Arch. Comput. Meth. Eng. 2014, 21, 331–358. [Google Scholar] [CrossRef]
- Bensoussan, A.; Blankenship, G. Singular perturbations in stochastic control. In Singular Perturbations and Asymptotic Analysis in Control Systems; Lecture Notes in Control and Information Sciences; Kokotovic, P.V., Bensoussan, A., Blankenship, G.L., Eds.; Springer: Berlin/Heidelberg, Germany, 1987; Volume 90, pp. 171–260. [Google Scholar]
- Evans, L.C. The perturbed test function method for viscosity solutions of nonlinear PDE. Proc. R. Soc. Edinb. A 1989, 111, 359–375. [Google Scholar] [CrossRef]
- Buckdahn, R.; Hu, Y. Probabilistic approach to homogenizations of systems of quasilinear parabolic PDEs with periodic structures. Nonlinear Anal. 1998, 32, 609–619. [Google Scholar] [CrossRef]
- Ichihara, N. A stochastic representation for fully nonlinear PDEs and its application to homogenization. J. Math. Sci. Univ. Tokyo 2005, 12, 467–492. [Google Scholar]
- Kushner, H.J. Weak Convergence Methods and Singularly Perturbed Stochastic Control and Filtering Problems; Birkhäuser: Boston, MA, USA, 1990. [Google Scholar]
- Kurtz, T.; Stockbridge, R.H. Stationary solutions and forward equations for controlled and singular martingale problems. Electron. J. Probab. 2001, 6, 5. [Google Scholar] [CrossRef]
- Kabanov, Y.; Pergamenshchikov, S. Two-Scale Stochastic Systems: Asymptotic Analysis and Control; Springer: Berlin/Heidelberg, Germany; Paris, France, 2003. [Google Scholar]
- Kokotovic, P.V. Applications of singular perturbation techniques to control problems. SIAM Rev. 1984, 26, 501–550. [Google Scholar] [CrossRef]
- Hartmann, C.; Schäfer-Bung, B.; Zueva, A. Balanced averaging of bilinear systems with applications to stochastic control. SIAM J. Control Optim. 2013, 51, 2356–2378. [Google Scholar] [CrossRef]
- Pardalos, P.M.; Yatsenko, V.A. Optimization and Control of Bilinear Systems: Theory, Algorithms, and Applications; Springer: New York, NY, USA, 2010. [Google Scholar]
- Hartmann, C.; Latorre, J.; Pavliotis, G.A.; Zhang, W. Optimal control of multiscale systems using reduced-order models. J. Comput. Dyn. 2014, 1, 279–306. [Google Scholar] [CrossRef]
- Peng, S. Backward Stochastic Differential Equations and Applications to Optimal Control. Appl. Math. Optim. 1993, 27, 125–144. [Google Scholar] [CrossRef]
- Touzi, N. Optimal Stochastic Control, Stochastic Target Problem, and Backward Differential Equation; Springer: Berlin, Germany, 2013. [Google Scholar]
- Pardoux, E.; Peng, S. Adapted solution of a backward stochastic differential equation. Syst. Control Lett. 1990, 14, 55–61. [Google Scholar] [CrossRef]
- Bahlali, K.; Kebiri, O.; Khelfallah, N.; Moussaoui, H. One dimensional BSDEs with logarithmic growth application to PDEs. Stochastics 2017, 89, 1061–1081. [Google Scholar] [CrossRef]
- Duffie, D.; Epstein, L.G. Stochastic differential utility. Econometrica 1992, 60, 353–394. [Google Scholar] [CrossRef]
- El Karoui, N.; Peng, S.; Quenez, M.C. Backward stochastic differential equations in finance. Math. Financ. 1997, 7, 1–71. [Google Scholar] [CrossRef]
- Hu, Y.; Imkeller, P.; Müller, M. Utility maximization in incomplete markets. Ann. Appl. Probab. 2005, 15, 1691–1712. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Peng, S. A stability theorem of backward stochastic differential equations and its application. Acad. Sci. Math. 1997, 324, 1059–1064. [Google Scholar] [CrossRef]
- Kobylanski, M. Backward stochastic differential equations and partial differential equations with quadratic growth. Ann. Probab. 2000, 28, 558–602. [Google Scholar] [CrossRef]
- Antonelli, F. Backward-forward stochastic differential equations. Ann. Appl. Probab. 1993, 3, 777–793. [Google Scholar] [CrossRef]
- Bahlali, K.; Gherbal, B.; Mezerdi, B. Existence of optimal controls for systems driven by FBSDEs. Syst. Control Lett. 1995, 60, 344–349. [Google Scholar] [CrossRef]
- Bahlali, K.; Kebiri, O.; Mtiraoui, A. Existence of an optimal Control for a system driven by a degenerate coupled Forward-Backward Stochastic Differential Equations. Comptes Rendus Math. 2017, 355, 84–89. [Google Scholar] [CrossRef]
- Ma, J.; Protter, P.; Yong, J. Solving Forward-Backward Stochastic Differential Equations Explicitly—A Four Step Scheme. Probab. Theory Relat. Fields 1994, 98, 339–359. [Google Scholar] [CrossRef]
- Zhen, W. Forward-backward stochastic differential equations, linear quadratic stochastic optimal control and nonzero sum differential games. J. Syst. Sci. Complex. 2005, 18, 179–192. [Google Scholar]
- Hartmann, C.; Schütte, C.; Weber, M.; Zhang, W. Importance sampling in path space for diffusion processes with slow-fast variables. Probab. Theory Relat. Fields 2017, 170, 177–228. [Google Scholar] [CrossRef] [Green Version]
- Bally, V. Approximation scheme for solutions of BSDE. In Backward Stochastic Differential Equations; El Karoui, N., Mazliak, L., Eds.; Addison Wesley Longman: Boston, MA, USA, 1997; pp. 177–191. [Google Scholar]
- Bender, C.; Steiner, J. Least-Squares Monte Carlo for BSDEs. In Numerical Methods in Finance; Springer: Berlin, Germany, 2012; pp. 257–289. [Google Scholar]
- Bouchard, B.; Elie, R.; Touzi, N. Discrete-time approximation of BSDEs and probabilistic schemes for fully nonlinear PDEs. Comput. Appl. Math. 2009, 8, 91–124. [Google Scholar]
- Chevance, D. Numerical methods for backward stochastic differential equations. In Numerical Methods in Finance; Publications of the Newton Institute, Cambridge University Press: Cambridge, UK, 1997; pp. 232–244. [Google Scholar]
- Hyndman, C.B.; Ngou, P.O. A Convolution Method for Numerical Solution of Backward Stochastic Differential Equations. Methodol. Comput. Appl. Probab. 2017, 19, 1–29. [Google Scholar] [CrossRef]
- Hartmann, C. Balanced model reduction of partially-observed Langevin equations: An averaging principle. Math. Comput. Model. Dyn. Syst. 2011, 17, 463–490. [Google Scholar] [CrossRef]
- Fleming, W.H. Optimal investment models with minimum consumption criteria. Aust. Econ. Pap. 2005, 44, 307–321. [Google Scholar] [CrossRef]
- Budhiraja, A.; Dupuis, P. A variational representation for positive functionals of infinite dimensional Brownian motion. Probab. Math. Stat. 2000, 20, 39–61. [Google Scholar]
- Dai Pra, P.; Meneghini, L.; Runggaldier, J.W. Connections between stochastic control and dynamic games. Math. Control Signal Syst. 1996, 9, 303–326. [Google Scholar] [CrossRef]
- Pavliotis, G.A.; Stuart, A.M. Multiscale Methods: Averaging and Homogenization; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Anderson, B.D.O.; Liu, Y. Controller reduction: Concepts and approaches. IEEE Trans. Autom. Control 1989, 34, 802–812. [Google Scholar] [CrossRef]
- Bensoussan, A.; Boccardo, L.; Murat, F. Homogenization of elliptic equations with principal part not in divergence form and hamiltonian with quadratic growth. Commun. Pure Appl. Math. 1986, 39, 769–805. [Google Scholar] [CrossRef]
- Pardoux, E.; Peng, S. Backward stochastic differential equations and quasilinear parabolic partial differential equations. In Stochastic Partial Differential Equations and Their Applications; Lecture Notes in Control and Information Sciences 176; Rozovskii, B.L., Sowers, R.B., Eds.; Springer: Berlin, Germany, 1992. [Google Scholar]
- Freidlin, M.; Wentzell, A. Random Perturbations of Dynamical Systems; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Khasminskii, R. Principle of averaging for parabolic and elliptic differential equations and for Markov processes with small diffusion. Theory Probab. Appl. 1963, 8, 1–21. [Google Scholar] [CrossRef]
- Gobet, E.; Turkedjiev, P. Adaptive importance sampling in least-squares Monte Carlo algorithms for backward stochastic differential equations. Stoch. Proc. Appl. 2005, 127, 1171–1203. [Google Scholar] [CrossRef]
- Turkedjiev, P. Numerical Methods for Backward Stochastic Differential Equations of Quadratic and Locally Lipschitz Type. Ph.D. Thesis, Humboldt-Universität zu Berlin, Berlin, Germany, 2013. [Google Scholar]
- Kebiri, O.; Neureither, L.; Hartmann, C. Adaptive importance sampling with forward-backward stochastic differential equations. arXiv, 2018; arXiv:1802.04981. [Google Scholar]
- Franzke, C.; Majda, A.J.; Vanden-Eijnden, E. Low-order stochastic mode reduction for a realistic barotropic model climate. J. Atmos. Sci. 2005, 62, 1722–1745. [Google Scholar] [CrossRef]
- Lall, S.; Marsden, J.; Glavaški, S. A subspace approach to balanced truncation for model reduction of nonlinear control systems. Int. J. Robust. Nonlinear Control 2002, 12, 519–535. [Google Scholar] [CrossRef] [Green Version]
- Briand, P.; Hu, Y. Probabilistic approach to singular perturbations of semilinear and quasilinear parabolic. Nonlinear Anal. 1999, 35, 815–831. [Google Scholar] [CrossRef]
- Bensoussan, A.; Lions, J.L.; Papanicolaou, G. Asymptotic Analysis for Periodic Structures; American Mathematical Society: Washington, DC, USA, 1978; pp. 769–805. [Google Scholar]
- Pardoux, E.; Yu, A. Veretennikov: On the poisson equation and diffusion approximation 3. Ann. Probab. 2005, 33, 1111–1133. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kebiri, O.; Neureither, L.; Hartmann, C. Singularly Perturbed Forward-Backward Stochastic Differential Equations: Application to the Optimal Control of Bilinear Systems. Computation 2018, 6, 41. https://doi.org/10.3390/computation6030041
Kebiri O, Neureither L, Hartmann C. Singularly Perturbed Forward-Backward Stochastic Differential Equations: Application to the Optimal Control of Bilinear Systems. Computation. 2018; 6(3):41. https://doi.org/10.3390/computation6030041
Chicago/Turabian StyleKebiri, Omar, Lara Neureither, and Carsten Hartmann. 2018. "Singularly Perturbed Forward-Backward Stochastic Differential Equations: Application to the Optimal Control of Bilinear Systems" Computation 6, no. 3: 41. https://doi.org/10.3390/computation6030041
APA StyleKebiri, O., Neureither, L., & Hartmann, C. (2018). Singularly Perturbed Forward-Backward Stochastic Differential Equations: Application to the Optimal Control of Bilinear Systems. Computation, 6(3), 41. https://doi.org/10.3390/computation6030041