A New Type of High-Order Mapped Unequal-Sized WENO Scheme for Nonlinear Degenerate Parabolic Equations
Abstract
1. Introduction
2. Numerical Method and Discretization
2.1. Weno Scheme
2.2. Mapped Unequal-Sized WENO Scheme
2.3. Analysis of MUS-WENO Scheme
2.4. Time Discretization Method
3. Results of Numerical Modeling
4. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Aronson, D.G. The porous medium equation, in nonlinear diffusion problems. In Lecture Notes in Mathemathics 1224; Springer: Berlin/Heidelberg, Germany, 1986; pp. 1–46. [Google Scholar]
- Magenes, E.; Nochetto, R.H.; Verdi, C. Energy error estimates for a linear scheme to approximate nonlinear parabolic problems. RAIRO Math. Model. Numer. Anal. 1987, 21, 655–678. [Google Scholar] [CrossRef]
- Barenblatt, G.I. On self-similar motions of compressible fluid in a porous medium. Akad. Nauk SSR Prikl. Mat. Meh. 1952, 16, 679–698. [Google Scholar]
- Zeldovich, Y.B.; Kompaneetz, A.S. Towards a theory of heat conduction with thermal conductivity depending on the temperature. Collection of Papers Dedicated to the 70th Anniversary of AF Ioffe. Izd. Akad. Nauk SSSR Moscow 1950, 38, 61–72. [Google Scholar]
- Liu, X.-D.; Osher, S.; Chan, T. Weighted essentially non-pscillatory schemes. J. Comput. Phys. 1994, 115, 200–212. [Google Scholar] [CrossRef]
- Jiang, G.-S.; Shu, C.-W. Efficient implementation of weighted ENO schemes. J. Comput. Phys. 1996, 126, 202–228. [Google Scholar] [CrossRef]
- Zhu, J.; Qiu, J. A new fifth order finit difference WENO scheme for solving hyperbolic conservation laws. J. Comput. Phys. 2016, 318, 110–121. [Google Scholar] [CrossRef]
- Zhu, J.; Shu, C.-W. A new type of multi-resolution WENO schemes with increasingly higher order of accuracy. J. Comput. Phys. 2018, 375, 659–683. [Google Scholar] [CrossRef]
- Zhang, Y.T.; Shu, C.-W. Third order WENO scheme on three dimensional tetrahedral meshes. Commun. Comput. Phys. 2009, 5, 836–848. [Google Scholar]
- Zhang, Y.T.; Shu, C.-W. High order WENO schemes for Hamilton-Jacobi equations on triangular meshes. SIAM J. Sci. Comput. 2003, 24, 1005–1030. [Google Scholar] [CrossRef]
- Liu, Y.; Shu, C.-W.; Zhang, M. High order finite difference WENO schemes for nonlineat degenerate parabolic equations. SIAM J. Sci. Comput. 2011, 33, 939–965. [Google Scholar] [CrossRef]
- Shi, J.; Hu, C.; Shu, C.W. A technique of treating negative weights in WENO schemes. J. Comput. Phys. 2002, 175, 108–127. [Google Scholar] [CrossRef]
- Henrick, A.K.; Aslam, T.D.; Powers, J.M. Mapped weighted essentially non-oscillatory schemes: Achieving optimal order near critical points. J. Comput. Phys. 2005, 207, 542–567. [Google Scholar] [CrossRef]
- Abedian, R.; Adibi, H.; Dehghan, M. A high-order weighted essentially non-oscillatory (WENO) finite difference scheme for nonlinear degenerate parabolic equations. Comput. Phys. Commun. 2013, 184, 1874–1888. [Google Scholar] [CrossRef]
- Abedian, R. A new high-order weighted essentially non-oscillatory finite difference scheme for nonlinear degenerate parabolic equations. Numer. Methods Partial. Differ. Equ. 2021, 37, 1317–1343. [Google Scholar] [CrossRef]
- Abedian, R. WENO-Z Schemes with Legendre basis for non-linear degenerate parabolic equations. Iran J. Math. Sci. Inform. 2021, 16, 125–143. [Google Scholar] [CrossRef]
- Abedian, R.; Dehghan, M. A high-order weighted essentially nonoscillatory scheme based on exponential polynomials for nonlinear degenerate parabolic equations. Numer. Methods Partial. Differ. Equ. 2022, 38, 970–996. [Google Scholar] [CrossRef]
- Ahmat, M.; Qiu, J. Hybrid HWENO method for nonlinear degenerate parabolic equations. J. Sci. Comput. 2023, 96, 83. [Google Scholar] [CrossRef]
- Jiang, Y. High order finite difference multi-resolution WENO method for nonlinear degenerate parabolic equations. J. Sci. Comput. 2021, 86, 1–20. [Google Scholar] [CrossRef]
- Abedian, R.; Dehghan, M. A RBF-WENO finite difference scheme for non-linear degenerate parabolic equations. J. Sci. Comput. 2022, 93, 60. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, Y.T. High-order exponential time differencing multi-resolution alternative finite difference WENO methods for nonlinear degenerate parabolic equations. J. Comput. Phys. 2025, 529, 113838. [Google Scholar] [CrossRef]
- Castro, M.; Costa, B.; Don, W.S. High order weighted essentially non-oscillatory WENO-Z schemes for hyperbolic conservation laws. J. Comput. Phys. 2011, 230, 1766–1792. [Google Scholar] [CrossRef]
- Borges, R.; Carmona, M.; Costa, B.; Don, W.S. An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. J. Comput. Phys. 2008, 227, 3191–3211. [Google Scholar] [CrossRef]
- Shu, C.-W. Total-variation-diminishing time discretizations. SIMA J. Sci. Stat. Comput. 1988, 9, 1073–1084. [Google Scholar] [CrossRef]
- Zhang, Q.; Wu, Z.L. Numerical simulation for porous medium equation by local discontinuous galerkun finite element method. J. Sci. Comput. 2009, 38, 127–148. [Google Scholar] [CrossRef]
- Buckley, S.E.; Leverett, M. Mechanism of fluid displacement in sands. Trans. AIME 1942, 146, 107–116. [Google Scholar] [CrossRef]
- Cavalli, F.; Naldi, G.; Puppo, G.; Semplice, M. High-order relaxation schemes for nonlinear degenerate diffusion problems. SIAM J. Numer. Anal. 2007, 45, 2098–2119. [Google Scholar] [CrossRef]
- Kurganov, A.; Tadmor, E. New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations. J. Comput. Phys. 2000, 160, 241–282. [Google Scholar] [CrossRef]
WENO6 | MUSWENO | ||||||||
---|---|---|---|---|---|---|---|---|---|
N | Error | Order | Error | Order | N | Error | Order | Error | Order |
20 | 2.39E-07 | 4.00E-07 | 20 | 2.19E-07 | 3.61E-07 | ||||
40 | 3.66E-09 | 6.03 | 5.91E-09 | 6.08 | 40 | 3.61E-09 | 5.93 | 5.80E-09 | 5.96 |
60 | 3.24E-10 | 5.98 | 5.17E-10 | 6.00 | 60 | 3.21E-10 | 5.96 | 5.13E-10 | 5.98 |
80 | 5.79E-11 | 5.98 | 9.22E-11 | 6.00 | 80 | 5.76E-11 | 5.98 | 9.15E-11 | 5.99 |
100 | 1.52E-11 | 5.98 | 2.42E-11 | 5.98 | 100 | 1.51E-11 | 5.98 | 2.40E-11 | 5.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, Z.; Li, L. A New Type of High-Order Mapped Unequal-Sized WENO Scheme for Nonlinear Degenerate Parabolic Equations. Computation 2025, 13, 182. https://doi.org/10.3390/computation13080182
Hou Z, Li L. A New Type of High-Order Mapped Unequal-Sized WENO Scheme for Nonlinear Degenerate Parabolic Equations. Computation. 2025; 13(8):182. https://doi.org/10.3390/computation13080182
Chicago/Turabian StyleHou, Zhengwei, and Liang Li. 2025. "A New Type of High-Order Mapped Unequal-Sized WENO Scheme for Nonlinear Degenerate Parabolic Equations" Computation 13, no. 8: 182. https://doi.org/10.3390/computation13080182
APA StyleHou, Z., & Li, L. (2025). A New Type of High-Order Mapped Unequal-Sized WENO Scheme for Nonlinear Degenerate Parabolic Equations. Computation, 13(8), 182. https://doi.org/10.3390/computation13080182