Ionic and Electrotonic Contributions to Short-Term Ventricular Action Potential Memory: An In Silico Study
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AP | action potential |
APD | action potential duration |
BCL | basic cycle length |
CL | cycle length |
ER | electrical APD restitution |
ERrand | scatter plot of APDs vs. preceding CLs during randomly varying pacing. |
ERs1s2 | standard electrical restitution (APD duration at conditioning cycle length S1 after pre/post-mature coupling interval S2) |
ERdyn | steady-state APD restitution |
GCaL | maximum conductance of L-type calcium channels. |
GNaL | maximum conductance of late sodium channels. |
GKr | maximum conductance of rapidly activating potassium channels. |
GNaCa | maximum conductance of sodium-calcium exchanger. |
HF | heart failure |
Ms | short-term AP memory (slope difference between ERdyn and ERs1s2 curves or between ERdyn and ERrand curves) |
SRrel | scaling factor for the total sarcoplasmic reticulum calcium release in the ORd model. |
Sdyn | slope of ERrand |
Srand | slope of ERrand |
Ss1s2 | slope of ERs1s2 |
Vm | membrane potential |
VF | ventricular fibrillation |
References
- Zaniboni, M. The electrical restitution of the non-propagated cardiac ventricular action potential. Pflügers Arch. 2023, 476, 9–37. [Google Scholar] [CrossRef] [PubMed]
- Ideker, R.E.; Rogers, J.M.; Richard, A.G. Steepness of the restitution curve: A slippery slope? J. Cardiovasc. Electrophysiol. 2002, 13, 1173–1175. [Google Scholar] [CrossRef] [PubMed]
- Nolasco, J.B.; Dahlen, R.W. A graphic method for the study of alternation in cardiac action potentials. J. Appl. Physiol. 1968, 25, 191–196. [Google Scholar] [CrossRef] [PubMed]
- Shivkumar, K.; Weiss, J.N. The slippery slope of human ventricular arrhythmias. J. Cardiovasc. Electropyhsiol. 2004, 15, 1364–1365. [Google Scholar] [CrossRef] [PubMed]
- Otani, N.F.; Gilmour, R.F., Jr. Memory models for the electrical properties of local cardiac systems. J. Theor. Biol. 1997, 187, 409–436. [Google Scholar] [CrossRef] [PubMed]
- Cherry, E.M.; Fenton, F.H. Suppression of alternans and conduction blocks despite APD restitution: Electrotonic, memory and conduction velocity effects. Am. J. Physiol. 2004, 286, H2332–H2341. [Google Scholar] [CrossRef] [PubMed]
- Elharrar, V.; Surawicz, B. Cycle length effect on restitution of action potential duration in dog cardiac fibers. Am. J. Physiol. 1983, 244, H782. [Google Scholar] [CrossRef] [PubMed]
- Hall, G.M.; Bahar, S.; Gauthier, D.J. Prevalence of rate-dependent behaviors in cardiac muscle. Phys. Rev. Lett. 1999, 82, 2995. [Google Scholar] [CrossRef]
- Watanabe, Y.; Uchida, H. Verapamil-induced sustained ventricular tachycardia in isolated, perfused rabbit hearts. Jpn. Circ. J. 1987, 51, 188–195. [Google Scholar] [CrossRef] [PubMed]
- Riccio, M.L.; Koller, M.L.; Gilmour, R.F., Jr. Electrical restitution and spatiotemporal organization during ventricular fibrillation. Circ. Res. 1999, 84, 955–963. [Google Scholar] [CrossRef] [PubMed]
- Samie, F.H.; Mandapati, R.; Gray, R.A.; Watanabe, Y.; Zuur, C.; Beaumont, J.; Jalife, J. A mechanism of transition from ventricular fibrillation to tachycardia. Effect of calcium channel blockade on the dynamics of rotating waves. Circ. Res. 2000, 86, 684–691. [Google Scholar] [CrossRef] [PubMed]
- Shvilkin, A.; Danilo, P., Jr.; Wang, J.; Burkhoff, D.; Anyukhovsky, E.P.; Sosunov, E.A.; Hara, M.; Rosen, M.R. Evolution and resolution of long-term cardiac memory. Circulation 1998, 97, 1810–1817. [Google Scholar] [CrossRef] [PubMed]
- Banville, I.; Chattipakorn, N.; Gray, R.A. Restitution dynamics during pacing and arrhythmias in isolated pig hearts. J. Cardiovasc. Electrophysiol. 2004, 15, 455–463. [Google Scholar] [CrossRef] [PubMed]
- Tolkacheva, E.G. The rate- and species-dependence of short-term memory in cardiac myocytes. J. Biol. Phys. 2007, 33, 35–47. [Google Scholar] [CrossRef] [PubMed]
- Tolkacheva, E.G.; Schaeffer, D.G.; Gauthier, D.J.; Mitchell, C.C. Analysis of the Fenton–Karma model through approximation by a one-dimensional map. Chaos 2002, 12, 1034–1042. [Google Scholar] [CrossRef] [PubMed]
- Tolkacheva, E.G.; Romeo, M.M.; Guerraty, M.; Gauthier, D. Conditions for alternans and its control in a two-dimensional mapping model of paced cardiac dynamics. Phys. Rev. E 2004, 69, 031904. [Google Scholar] [CrossRef] [PubMed]
- Kalb, S.S.; Dobrovolny, H.; Tolkacheva, E.G.; Idriss, S.F.; Krassowska, W.; Gauthier, D.J. The restitution portrait: A new method for investigating rate-dependent restitution. J. Cardiovasc. Electrophysiol. 2004, 15, 698–709. [Google Scholar] [CrossRef] [PubMed]
- Choi, B.-P.; Liu, T.L.; Salama, G.S. Adaptation of cardiac action potential durations to stimulation history with random diastolic intervals. J. Cardiovasc. Electrophysiol. 2004, 15, 1188–1197. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, M.A.; Koller, M.L. Mathematical analysis of dynamics of cardiac memory and accommodation: Theory and experiment. Am. J. Physiol. 2002, 282, H1534–H1547. [Google Scholar] [CrossRef] [PubMed]
- Tolkacheva, E.G.; Schaeffer, D.G.; Gauthier, D.J.; Krassowska, W. Condition for alternans and stability of the 1:1 response pattern in a “memory” model of paced cardiac dynamics. Phys. Rev. E 2003, 67, 031904. [Google Scholar] [CrossRef] [PubMed]
- Fox, J.J.; Bodenschatz, E.; Gilmour, R.F., Jr. Period-doubling instability and memory in cardiac tissue. Phys. Rev. Lett. 2002, 89, 138101–138104. [Google Scholar] [CrossRef] [PubMed]
- Goldhaber, J.; Xie, L.H.; Duong, T.; Motter, C.; Khuu, K.; Weiss, J.N. Action potential duration restitution and alternans in rabbit ventricular myocytes: The key role of intracellular calcium cycling. Circ. Res. 2005, 96, 459–466. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Ueyama, T.; Wang, J.; Wu, R.J.; Lin, S.F. Short-term memory and electrical restitution in the canine transmural ventricle. Physiol. Meas. 2011, 32, 207–222. [Google Scholar] [CrossRef] [PubMed]
- O’Hara, T.; Virág, L.; Varró, A.; Rudy, Y. Simulation of the undiseased human cardiac ventricular action potential: Model formulation and experimental validation. PLoS Comput. Biol. 2011, 7, e1002061. [Google Scholar] [CrossRef] [PubMed]
- Horváth, B.; Hézső, T.; Szentandrássy, N.; Kistamás, K.; Árpádffy-Lovas, T.; Varga, R.; Gazdag, P.; Veress, R.; Dienes, C.; Baranyai, D.; et al. Late sodium current in human, canine and guinea pig ventricular myocardium. J. Mol. Cell Cardiol. 2020, 139, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Huelsing, D.J.; Spitzer, K.W.; Cordeiro, J.M.; Pollard, A.E. Conduction between isolated rabbit Purkinje and ventricular myocytes coupled by a variable resistance. Am. J. Physiol. 1998, 274, H1163–H1173. [Google Scholar] [CrossRef] [PubMed]
- Lopshire, J.C.; Zipes, D.P. Sudden cardiac death: Better understanding of risks, mechanisms, and treatment. Circulation 2006, 114, 1134–1136. [Google Scholar] [CrossRef] [PubMed]
- Rubart, M.; Zipes, D.P. Mechanisms of sudden cardiac death. J. Clin. Investig. 2005, 115, 2305–2315. [Google Scholar] [CrossRef] [PubMed]
- Cytrynbaum, E.; Keener, J.P. Stability conditions for the traveling pulse: Modifying the restitution hypothesis. Chaos 2002, 12, 788–799. [Google Scholar] [CrossRef] [PubMed]
- Elshrif, M.M.; Cherry, E.M. A quantitative comparison of the behavior of human ventricular cardiac electrophysiology models in tissue. PLoS ONE 2014, 9, e84401. [Google Scholar] [CrossRef] [PubMed]
- Vinet, A. Memory and bistability in a one-dimensional loop of model cardiac cells. J. Biol. Syst. 1999, 7, 451–473. [Google Scholar] [CrossRef]
- Dvir, H.; Zlochiver, S. Stochastic cardiac pacing increases ventricular electrical stability—A computational study. Biophys. J. 2013, 105, 533–542. [Google Scholar] [CrossRef] [PubMed]
- Dvir, H.; Zlochiver, S. Heart rate variability effect on the myocyte action potential duration restitution: Insights from switched systems theory. In Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 30 August–3 September 2011; pp. 685–688. [Google Scholar] [CrossRef]
- Lemay, M.; De Lange, E.; Kucera, J.P. Uncovering the dynamics of cardiac systems using stochastic pacing and frequency domain analyses. PLoS Comput. Biol. 2012, 8, e1002399. [Google Scholar] [CrossRef] [PubMed]
- Zaniboni, M. Short-term action potential memory and electrical restitution: A cellular computational study on the stability of cardiac repolarization under dynamic pacing. PLoS ONE 2018, 13, e0193416. [Google Scholar] [CrossRef] [PubMed]
- Zaniboni, M. Restitution and Stability of Human Ventricular Action Potential at High and Variable Pacing Rate. Biophys. J. 2019, 117, 2382–2395. [Google Scholar] [CrossRef] [PubMed]
- Zaniboni, M.; Cacciani, F.; Salvarani, N. Temporal variability of repolarization in rat ventricular myocytes paced with time-varying frequencies. Exp. Physiol. 2007, 92, 859–869. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.; Patwardhan, A. Restitution of action potential duration during sequential changes in diastolic intervals shows multimodal behavior. Circ. Res. 2004, 94, 634–641. [Google Scholar] [CrossRef] [PubMed]
- Tolkacheva, E.G.; Anumonwo, J.M.B.; Jalife, J. Action potential duration restitution portraits of mammalian ventricular myocytes: Role of calcium current. Biophys. J. 2006, 91, 2735–2745. [Google Scholar] [CrossRef] [PubMed]
- Viswanathan, P.C.; Shaw, R.M.; Rudy, Y. Effects of IKr and IKs heterogeneity on action potential duration and its rate dependence: A simulation study. Circulation 1999, 99, 2466–2474. [Google Scholar] [CrossRef] [PubMed]
- Hua, F.; Gilmour, R.F., Jr. Contribution of IKr to rate-dependent action potential dynamics in canine endocardium. Circ. Res. 2004, 94, 810–819. [Google Scholar] [CrossRef] [PubMed]
- Williams, B.A.; Dickenson, D.R.; Beatch, G.N. Kinetics of rate-dependent shortening of action potential duration in guinea-pig ventricle: Effects of IK1 and IKr blockade . Br. J. Pharmacol. 1999, 126, 1426–1436. [Google Scholar] [CrossRef] [PubMed]
- Romero, L.; Pueyo, E.; Fink, M.; Rodríguez, B. Impact of ionic current variability on human ventricular cellular electrophysiology. Am. J. Physiol. Heart Circ. Physiol. 2009, 297, H1436–H1445. [Google Scholar] [CrossRef] [PubMed]
- Ten Tusscher, K.H.W.J.; Panfilov, A.V. Alternans and spiral breakup in a human ventricular tissue model. Am. J. Physiol. Heart Circ. Physiol. 2006, 291, H1088–H1100. [Google Scholar] [CrossRef] [PubMed]
- Tan, R.C.; Joyner, R.W. Electrotonic influences on action potentials from isolated ventricular cells. Circ. Res. 1990, 67, 1071–1081. [Google Scholar] [CrossRef] [PubMed]
- Zaniboni, M.; Pollard, A.E.; Yang, L.; Spitzer, K.W. Beat-to-beat repolarization variability in ventricular myocytes and its suppression by electrical coupling. Am. J. Physiol. Heart Circ. Physiol. 2000, 278, H677–H687. [Google Scholar] [CrossRef] [PubMed]
- Spitzer, K.W.; Pollard, A.E.; Yang, L.; Zaniboni, M.; Cordeiro, J.M.; Huelsing, D.J. Cell-to-cell electrical interactions during early and late repolarization. J. Cardiovasc. Electrophysiol. 2006, 17 (Suppl. 1), S8–S14. [Google Scholar] [CrossRef] [PubMed]
- Pruvot, E.J.; Katra, R.P.; Rosenbaum, D.S.; Laurita, K.R. Role of calcium cycling versus restitution in the mechanism of repolarization alternans. Circ. Res. 2004, 94, 1083–1090. [Google Scholar]
- Zaniboni, M. Ventricular Repolarization and Calcium Transient Show Resonant Behavior under Oscillatory Pacing Rate. Biomolecules 2022, 12, 873. [Google Scholar] [CrossRef] [PubMed]
- Narayan, S.M.; Bayer, J.D.; Lalani, G.; Trayanova, N.A. Action potential dynamics explain arrhythmic vulnerability in human heart failure: A clinical and modeling study implicating abnormal calcium handling. J. Am. Coll. Cardiol. 2008, 52, 1782–1792. [Google Scholar] [CrossRef] [PubMed]
- Sato, D.; Shiferaw, Y.; Qu, Z.; Garfinkel, A.; Weiss, J.N.; Karma, A. Inferring the cellular origin of voltage and calcium alternans from the spatial scales of phase reversal during discordant alternans. Biophys. J. 2007, 92, L33–L35. [Google Scholar] [CrossRef] [PubMed]
- Sobie, E.A.; Song, L.S.; Lederer, W.J. Restitution of Ca2+ release and vulnerability to arrhythmias. J. Cardiovasc. Electrophysiol. 2006, 17 (Suppl. S1), S64–S70. [Google Scholar] [CrossRef] [PubMed]
- Sato, D.; Shiferaw, Y.; Garfinkel, A.; Weiss, J.N.; Qu, Z.; Karma, A. Spatially discordant alternans in cardiac tissue: Role of calcium cycling. Circ. Res. 2006, 99, 520–527. [Google Scholar] [CrossRef] [PubMed]
- Weinberg, S.H. Spatial discordance and phase reversals during alternate pacing in discrete-time kinematic and cardiomyocyte ionic models. Chaos 2015, 25, 103119. [Google Scholar] [CrossRef] [PubMed]
- Chudin, E.; Goldhaber, J.; Garfinkel, A.; Weiss, J.; Kogan, B. Intracellular Ca2+ dynamics and the stability of ventricular tachycardia. Biophys. J. 1999, 77, 2930–2941. [Google Scholar] [CrossRef] [PubMed]
- Weiss, J.N.; Karma, A.; Shiferaw, Y.; Chen, P.S.; Garfinkel, A.; Qu, Z. From pulsus to pulseless: The saga of cardiac alternans. Circ. Res. 2006, 98, 1244–1253. [Google Scholar] [CrossRef] [PubMed]
- Weiss, J.N.; Qu, Z.; Chen, P.S.; Lin, S.F.; Karagueuzian, H.S.; Hayashi, H.; Garfinkel, A.; Karma, A. The dynamics of cardiac fibrillation. Circulation 2005, 112, 1232–1240. [Google Scholar] [CrossRef] [PubMed]
- Baher, A.; Qu, Z.; Hayatdavoudi, A.; Lamp, S.T.; Yang, M.J.; Xie, F.; Turner, S.; Garfinkel, A.; Weiss, J.N. Short-term cardiac memory and mother rotor fibrillation. Am. J. Physiol. Heart Circ. Physiol. 2007, 292, H180–H189. [Google Scholar] [CrossRef] [PubMed]
- Chan, Y.H.; Tsai, W.C.; Ko, J.S.; Yin, D.; Chang, P.C.; Rubart, M.; Weiss, J.N.; Everett, T.H., IV; Lin, S.F.; Chen, P.S. Small-Conductance Calcium-Activated Potassium Current Is Activated During Hypokalemia and Masks Short-Term Cardiac Memory Induced by Ventricular Pacing. Circulation 2015, 132, 1377–1386. [Google Scholar] [CrossRef] [PubMed]
- Pitruzzello, A.M.; Krassowska, W.; Idriss, S.F. Spatial heterogeneity of the restitution portrait in rabbit epicardium. Am. J. Physiol. Heart Circ. Physiol. 2007, 292, H1568–H1578. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Lin, S.F.; Yang, Z.; Jin, Y.B. Vulnerability during short-term memory induced response in canine ventricle. Biomed. Mater. Eng. 2014, 24, 893–899. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.T.; Chu, C.S.; Cheng, K.H.; Lu, Y.H.; Huang, C.H.; Lin, T.H.; Lee, M.C.; Sheu, S.H.; Lai, W.T. Effect of short-term cardiac memory on ventricular electrical restitution and QT intervals in humans. Kaohsiung J. Med. Sci. 2009, 25, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Patberg, K.W.; Rosen, M.R. Molecular determinants of cardiac memory and their regulation. J. Mol. Cell Cardiol. 2004, 36, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Janse, M.J.; Sosunov, E.A.; Coronel, R.; Opthof, T.; Anyukhovsky, E.P.; de Bakker, J.M.T.; Plotnikov, A.N.; Shlapakova, I.N.; Danilo Jr, P.; Tijssen, J.G.P.; et al. Repolarization gradients in the canine left ventricle before and after induction of short-term cardiac memory. Circulation 2005, 112, 1711–1718. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.T.; Chu, C.S.; Lin, T.H.; Yen, H.W.; Voon, W.C.; Sheu, S.H.; Lai, W.T. Effect of sodium and calcium channel blockers on short-term cardiac memory in humans. Int. J. Cardiol. 2008, 123, 94–101. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaniboni, M. Ionic and Electrotonic Contributions to Short-Term Ventricular Action Potential Memory: An In Silico Study. Computation 2025, 13, 175. https://doi.org/10.3390/computation13070175
Zaniboni M. Ionic and Electrotonic Contributions to Short-Term Ventricular Action Potential Memory: An In Silico Study. Computation. 2025; 13(7):175. https://doi.org/10.3390/computation13070175
Chicago/Turabian StyleZaniboni, Massimiliano. 2025. "Ionic and Electrotonic Contributions to Short-Term Ventricular Action Potential Memory: An In Silico Study" Computation 13, no. 7: 175. https://doi.org/10.3390/computation13070175
APA StyleZaniboni, M. (2025). Ionic and Electrotonic Contributions to Short-Term Ventricular Action Potential Memory: An In Silico Study. Computation, 13(7), 175. https://doi.org/10.3390/computation13070175