Simulation and Fitting of a PID Fuzzy Control in a Virtual Prototype of a Knee Orthosis
Abstract
:1. Introduction
2. Virtual Prototype of the Orthosis
3. Dynamic Model
Desired Trajectory
4. Control System
4.1. PID Fuzzy Control
4.2. PID Fuzzy Control Rules
4.3. Fuzzy Control Simulation Model
5. Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barrera Sánchez, A.; Blanco Ortega, A.; Martínez Rayón, E.; Gómez Becerra, F.A.; Abúndez Pliego, A.; Campos Amezcua, R.; Guzmán Valdivia, C.H. State of the Art Review of Active and Passive Knee Orthoses. Machines 2022, 10, 865. [Google Scholar] [CrossRef]
- Lara-Barrios, C.M.; Blanco-Ortega, A.; Guzmán-Valdivia, C.H.; Bustamante Valles, K.D. Literature review and current trends on transfemoral powered prosthetics. Adv. Robot. 2018, 32, 51–62. [Google Scholar] [CrossRef]
- Villa-Parra, A.; Delisle-Rodriguez, D.; Lima, J.S.; Frizera-Neto, A.; Bastos, T. Knee Impedance Modulation to Control an Active Orthosis Using Insole Sensors. Sensors 2017, 17, 2751. [Google Scholar] [CrossRef] [PubMed]
- Pratt, G.A.; Willisson, P.; Bolton, C.; Hofman, A. Late motor processing in low-impedance robots: Impedance control of series-elastic actuators. In Proceedings of the 2004 American Control Conference, Boston, MA, USA, 30 June–2 July 2004; Volume 4, pp. 3245–3251. [Google Scholar] [CrossRef]
- Veneman, J.F.; Ekkelenkamp, R.; Kruidhof, R.; van der Helm, F.C.T.; van der Kooij, H. A Series Elastic- and Bowden-Cable-Based Actuation System for Use as Torque Actuator in Exoskeleton-Type Robots. Int. J. Rob. Res. 2006, 25, 261–281. [Google Scholar] [CrossRef]
- van der Kooij, H.; Veneman, J.; Ekkelenkamp, R. Design of a compliantly actuated exoskeleton for an impedance controlled gait trainer robot. In Proceedings of the 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, New York, NY, USA, 30 August–3 September 2006; pp. 189–193. [Google Scholar] [CrossRef]
- Veneman, J.F.; Kruidhof, R.; Hekman, E.E.G.; Ekkelenkamp, R.; Van Asseldonk, E.H.F.; van der Kooij, H. Design and Evaluation of the LOPES Exoskeleton Robot for Interactive Gait Rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 2007, 15, 379–386. [Google Scholar] [CrossRef]
- Hussain, S.; Xie, S.Q.; Jamwal, P.K. Robust Nonlinear Control of an Intrinsically Compliant Robotic Gait Training Orthosis. IEEE Trans. Syst. Man. Cybern. Syst. 2013, 43, 655–665. [Google Scholar] [CrossRef]
- Mefoued, S. A second order sliding mode control and a neural network to drive a knee joint actuated orthosis. Neurocomputing 2015, 155, 71–79. [Google Scholar] [CrossRef]
- Lopez, R.; Aguilar-Sierra, H.; Salazar, S.; Torres, J.; Lozano, R. Adaptive control for passive kinesiotherapy ELLTIO. In Proceedings of the 2013 16th International Conference on Advanced Robotics (ICAR), Montevideo, Uruguay, 25–29 November 2013; pp. 1–6. [Google Scholar] [CrossRef]
- López, R.; Aguilar, H.; Salazar, S.; Lozano, R.; Torres, J.A. Modelado y Control de un Exoesqueleto para la Rehabilitación de Extremidad Inferior con dos grados de libertad. Rev. Iberoam. Automática Informática Industrial RIAI 2014, 11, 304–314. [Google Scholar] [CrossRef]
- Santos, W.M.D.; Caurin, G.A.P.; Siqueira, A.A.G. Design and control of an active knee orthosis driven by a rotary Series Elastic Actuator. Control Eng. Pract. 2017, 58, 307–318. [Google Scholar] [CrossRef]
- Bacek, T.; Moltedo, M.; Langlois, K.; Rodriguez-Guerrero, C.; Vanderborght, B.; Lefeber, D. A novel modular compliant knee joint actuator for use in assistive and rehabilitation orthoses. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017; pp. 5812–5817. [Google Scholar] [CrossRef]
- Ahmed, N.; Humaidi, A.; Sabah, A. Clinical Trajectory control for lower Knee rehabilitation using ADRC method. J. Appl. Res. Technol. 2022, 20, 576–583. [Google Scholar] [CrossRef]
- Shi, Y.; Guo, M.; Hui, C.; Li, S.; Ji, X.; Yang, Y.; Luo, X.; Xia, D. Learning-Based Repetitive Control of a Bowden-Cable-Actuated Exoskeleton with Frictional Hysteresis. Micromachines 2022, 13, 1674. [Google Scholar] [CrossRef] [PubMed]
- Mefoued, S. A robust adaptive neural control scheme to drive an actuated orthosis for the assistance of knee movements. Neurocomputing 2014, 140, 27–40. [Google Scholar] [CrossRef]
- Mefoued, S.; Mohammed, S.; Amirat, Y. Knee joint movement assistance through robust control of an actuated orthosis. In Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA, USA, 25–30 September 2011; pp. 1749–1754. [Google Scholar] [CrossRef]
- Rifai, H.; Hassani, W.; Mohammed, S.; Amirat, Y. Bounded control of an actuated lower limb orthosis. In Proceedings of the IEEE Conference on Decision and Control and European Control Conference, Orlando, FL, USA, 12–15 December 2011; pp. 873–878. [Google Scholar] [CrossRef]
- Alvarez-Ramirez, J.; Kelly, R.; Cervantes, I. Semiglobal stability of saturated linear PID control for robot manipulators. Automatica 2003, 39, 989–995. [Google Scholar] [CrossRef]
- Önen, Ü.; Botsalı, F.M.; Kalyoncu, M.; Şahin, Y.; Tınkır, M. Design and Motion Control of a Lower Limb Robotic Exoskeleton. In Design, Control and Applications of Mechatronic Systems in Engineering; InTech: London, UK, 2017. [Google Scholar] [CrossRef]
- Shan, H.; Jiang, C.; Mao, Y.; Wang, X. Design and control of a wearable active knee orthosis for walking assistance. In Proceedings of the 2016 IEEE 14th International Workshop on Advanced Motion Control (AMC), Auckland, New Zealand, 22–24 April 2016; pp. 51–56. [Google Scholar] [CrossRef]
- Lu, J.; Haninger, K.; Chen, W.; Tomizuka, M. Design and torque-mode control of a cable-driven rotary series elastic actuator for subject-robot interaction. In Proceedings of the 2015 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), Busan, Republic of Korea, 7–11 July 2015; pp. 158–164. [Google Scholar] [CrossRef]
- Rivera, J.A.Q.; Ross, O.H.M.; Cruz, R.S.; Castillo López, O. Design and Implementation of Intelligent Controllers in Soft Processors for the Walking of a Biped Robot. Comput. Sist. 2018, 22, 1431–1442. [Google Scholar] [CrossRef]
- Mamdani, E.H.; Assilian, S. An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Man. Mach. Stud. 1975, 7, 1–13. [Google Scholar] [CrossRef]
- Mamdani. Application of Fuzzy Logic to Approximate Reasoning Using Linguistic Synthesis. IEEE Trans. Comput. 1977, C-26, 1182–1191. [Google Scholar] [CrossRef]
- Sulzer, J.S.; Gordon, K.E.; Hornby, T.G.; Peshkin, M.A.; Patton, J.L. Adaptation to knee flexion torque during gait. In Proceedings of the 2009 IEEE International Conference on Rehabilitation Robotics, Kyoto, Japan, 23–26 June 2009; pp. 713–718. [Google Scholar] [CrossRef]
- el zahraa Wehbi, F.; Huo, W.; Amirat, Y.; El Rafei, M.; Khalil, M.; Mohammed, S. Active impedance control of a knee-joint orthosis during swing phase. In Proceedings of the 2017 International Conference on Rehabilitation Robotics (ICORR), London, UK, 17–20 July 2017; pp. 435–440. [Google Scholar] [CrossRef]
- Ma, H.; Lai, W.-Y.; Liao, W.-H.; Fong, D.T.-P.; Chan, K.-M. Design and control of a powered knee orthosis for gait assistance. In Proceedings of the 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Wollongong, NSW, Australia, 9–12 July 2013; pp. 816–821. [Google Scholar] [CrossRef]
- Zhang, L.; Li, M. Fuzzy modeling and control of a class of simple pendulum system based on robust technology. In Proceedings of the 2017 6th Data-Driven Control and Learning Systems (DDCLS), Chongqing, China, 26–27 May 2017; pp. 168–173. [Google Scholar] [CrossRef]
- Kumar, A.; Sharma, S.; Mitra, R. Design of Type-2 Fuzzy Controller based on LQR Mapped Fusion Function. Int. J. Intell. Syst. Appl. 2012, 4, 18–29. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Z.; Xue, D.; Xu, X. Real-time controlling of inverted pendulum by fuzzy logic. In Proceedings of the 2009 IEEE International Conference on Automation and Logistics, Shenyang, China, 5–7 August 2009; pp. 1180–1183. [Google Scholar] [CrossRef]
- Brock, S. Practical approach to fuzzy control of inverter pendulum [for inverter read inverted]. In Proceedings of the IEEE International Conference on Industrial Technology, Maribor, Slovenia, 10–12 December; 2003; pp. 31–35. [Google Scholar] [CrossRef]
- Ochoa, G.V.; Forero, J.D.; Quinones, L.O. Fuzzy adaptive PID controller applied to an electric heater in MATLAB/Simulink. Contemp. Eng. Sci. 2018, 11, 2849–2856. [Google Scholar] [CrossRef]
- Liu, X.; Liu, M. Research on Artificial Intelligence Controller of DC Motor. Sci. J. Technol. 2023, 5, 6–14. [Google Scholar] [CrossRef]
- Wang, Y.; Jin, Q.; Zhang, R. Improved fuzzy PID controller design using predictive functional control structure. ISA Trans. 2017, 71, 354–363. [Google Scholar] [CrossRef]
- El-Nagar, A.M.; El-Bardini, M. Practical Implementation for the interval type-2 fuzzy PID controller using a low cost microcontroller. Ain Shams Eng. J. 2014, 5, 475–487. [Google Scholar] [CrossRef]
- Attia, A.-H.; Rezeka, S.F.; Saleh, A.M. Fuzzy logic control of air-conditioning system in residential buildings. Alex. Eng. J. 2015, 54, 395–403. [Google Scholar] [CrossRef]
- Zhu, Z.; Liu, Y.; He, Y.; Wu, W.; Wang, H.; Huang, C.; Ye, B. Fuzzy PID Control of the Three-Degree-of-Freedom Parallel Mechanism Based on Genetic Algorithm. Appl. Sci. 2022, 12, 11128. [Google Scholar] [CrossRef]
- Urrea, C.; Kern, J.; Alvarado, J. Design and Evaluation of a New Fuzzy Control Algorithm Applied to a Manipulator Robot. Appl. Sci. 2020, 10, 7482. [Google Scholar] [CrossRef]
- Nasr, A.; Hashemi, A.; McPhee, J. Model-Based Mid-Level Regulation for Assist-As-Needed Hierarchical Control of Wearable Robots: A Computational Study of Human-Robot Adaptation. Robotics 2022, 11, 20. [Google Scholar] [CrossRef]
- Nuchkrua, T.; Leephakpreeda, T. Fuzzy Self-Tuning PID Control of Hydrogen-Driven Pneumatic Artificial Muscle Actuator. J. Bionic Eng. 2013, 10, 329–340. [Google Scholar] [CrossRef]
- Zhao, C.; Liu, Z.; Zhu, L.; Wang, Y. Design and Research of Series Actuator Structure and Control System Based on Lower Limb Exoskeleton Rehabilitation Robot. Actuators 2024, 13, 20. [Google Scholar] [CrossRef]
- Celebi, B.; Yalcin, M.; Patoglu, V. AssistOn-Knee: A self-aligning knee exoskeleton. In Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, 3–7 November 2013; pp. 996–1002. [Google Scholar] [CrossRef]
- Huo, W.; Mohammed, S.; Amirat, Y. Observer-based active impedance control of a knee-joint assistive orthosis. In Proceedings of the 2015 IEEE International Conference on Rehabilitation Robotics (ICORR), Singapore, 11–14 August 2015; pp. 313–318. [Google Scholar] [CrossRef]
- Rakhtala, S.M. Adaptive gain super twisting algorithm to control a knee exoskeleton disturbed by unknown bounds. Int. J. Dyn. Control 2021, 9, 711–726. [Google Scholar] [CrossRef]
- Heo, Y.; Choi, H.-J.; Lee, J.-W.; Cho, H.-S.; Kim, G.-S. Motion-Based Control Strategy of Knee Actuated Exoskeletal Gait Orthosis for Hemiplegic Patients: A Feasibility Study. Appl. Sci. 2023, 14, 301. [Google Scholar] [CrossRef]
- Ángel, L.; Pérez, M.P.; Díaz-Quintero, C.; Mendoza, C. ADAMS/MATLAB Co-Simulation: Dynamic Systems Analysis and Control Tool. Appl. Mech. Mater. 2012, 232, 527–531. [Google Scholar] [CrossRef]
- Nair, A.S.; Ezhilarasi, D. Performance Analysis of Super Twisting Sliding Mode Controller by ADAMS–MATLAB Co-simulation in Lower Extremity Exoskeleton. Int. J. Precis. Eng. Manuf.-Green Technol. 2020, 7, 743–754. [Google Scholar] [CrossRef]
- Chávez-Olivares, C.; Rubio, E.; Guzmán, C. Study of dynamic simulators with ADAMS and Matlab/Simulink for control systems. Rev. Int. Métodos Numér. Cálc. Diseño Ing. 2022, 38, 19. [Google Scholar] [CrossRef]
- Ortega, A.B.; Bautista, R.F.V.; Vela-Váldes, G.; Marmol, E.Q.; López, G.L. Control of a virtual prototype of an ankle rehabilitation machine. Rev. Fac. Ing. Univ. Antioq. 2013, 67, 183–196. [Google Scholar] [CrossRef]
- Blanco-Ortega, A.; Gomez-Becerra, F.A.; Valdes, L.G.V.; Arcega, R.O.D. A Generalized Proportional Integral Controller for an Ankle Rehabilitation Machine Based on an XY Table. In Proceedings of the 2013 International Conference on Mechatronics, Electronics and Automotive Engineering, Morelos, Mexico, 19–22 November 2013; pp. 152–157. [Google Scholar] [CrossRef]
- Astrom, K.J.; Hagglund, T. New tuning methods for PID controllers. In Proceedings of the 3rd European Control Conference, Rome, Italy, 5–8 September 1995; Library of Congress Cataloging-in-Publication Data. pp. 2456–2462. [Google Scholar]
NB | NM | NS | ZO | PS | PM | PB | ||
---|---|---|---|---|---|---|---|---|
NB | PB | PB | PM | PM | PS | ZO | ZO | |
NM | PB | PB | PM | PS | PS | ZO | NS | |
NS | PM | PM | PM | PS | ZO | NS | NS | |
ZO | PM | PM | PS | ZO | NS | NM | NM | |
PS | PS | PS | ZO | NS | NS | NM | NM | |
PM | PS | ZO | NS | NM | NM | NM | NB | |
PB | ZO | ZO | NM | NM | NM | NB | NB |
NB | NM | NS | ZO | PS | PM | PB | ||
---|---|---|---|---|---|---|---|---|
NB | NB | NB | NM | NM | NS | ZO | ZO | |
NM | NB | NB | NM | NS | NS | ZO | ZO | |
NS | NB | NM | NS | NS | ZO | PZ | PS | |
ZO | NM | NM | NS | ZO | PS | PM | PM | |
PS | NM | NS | ZO | PS | PS | PM | PB | |
PM | ZO | ZO | PS | PS | PM | PB | PB | |
PB | ZO | ZO | PS | PM | PM | PB | PB |
NB | NM | NS | ZO | PS | PM | PB | ||
---|---|---|---|---|---|---|---|---|
NB | PS | NS | NB | NB | NB | NM | PS | |
NM | PS | NS | NB | NM | NM | NS | ZO | |
NS | ZO | NS | NM | NM | NS | NS | ZO | |
ZO | ZO | NS | NS | NS | NS | NS | ZO | |
PS | ZO | ZO | ZO | ZO | ZO | ZO | ZO | |
PM | PB | NS | PS | PS | PS | PS | PB | |
PB | PB | PM | PM | PM | PS | PS | PB |
Simulation Time | Control Method | Overshoot | Stabilization Time (s) |
---|---|---|---|
10 s | Fuzzy PID | 12% | 0.7 |
Classic PID | 40% | 0.6 | |
PID | 30% | 0.8 | |
42 s | Fuzzy PID | 20% | 0.4 |
Classic PID | 30% | 0.5 | |
PID | 28% | 0.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barrera Sánchez, A.; Campos Amezcua, R.; Azcaray Rivera, H.R.; Mata, A.M.; Ortega, A.B.; Valadez, C.M.; Valdivia, C.H.G. Simulation and Fitting of a PID Fuzzy Control in a Virtual Prototype of a Knee Orthosis. Computation 2025, 13, 126. https://doi.org/10.3390/computation13050126
Barrera Sánchez A, Campos Amezcua R, Azcaray Rivera HR, Mata AM, Ortega AB, Valadez CM, Valdivia CHG. Simulation and Fitting of a PID Fuzzy Control in a Virtual Prototype of a Knee Orthosis. Computation. 2025; 13(5):126. https://doi.org/10.3390/computation13050126
Chicago/Turabian StyleBarrera Sánchez, Agustín, Rafael Campos Amezcua, Héctor R. Azcaray Rivera, Arturo Martínez Mata, Andrés Blanco Ortega, Cuauhtémoc Mazón Valadez, and César Humberto Guzmán Valdivia. 2025. "Simulation and Fitting of a PID Fuzzy Control in a Virtual Prototype of a Knee Orthosis" Computation 13, no. 5: 126. https://doi.org/10.3390/computation13050126
APA StyleBarrera Sánchez, A., Campos Amezcua, R., Azcaray Rivera, H. R., Mata, A. M., Ortega, A. B., Valadez, C. M., & Valdivia, C. H. G. (2025). Simulation and Fitting of a PID Fuzzy Control in a Virtual Prototype of a Knee Orthosis. Computation, 13(5), 126. https://doi.org/10.3390/computation13050126