How Re-Infections and Newborns Can Impact Visible and Hidden Epidemic Dynamics?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Differential Equations, Initial Conditions, and Parameter Identification Procedure
2.2. Equilibrium Points
2.3. Quasi-Equilibrium Point
3. Results and Discussion
3.1. The COVID-19 Pandemic Dynamics in South Korea and Austria
3.2. The Pertussis Epidemic in England
4. Conclusions
Supplementary Materials
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kermack, W.O.; McKendrick, A.G. A Contribution to the mathematical theory of epidemics. J. R. Stat. Soc. Ser. A 1927, 115, 700–721. [Google Scholar]
- Weiss, H. The SIR model and the foundations of public health. MatMat 2013, 3, 1–17. [Google Scholar]
- Daley, D.J.; Gani, J. Epidemic Modeling: An Introduction; Cambridge University Press: New York, NY, USA, 2005. [Google Scholar]
- Keeling, M.; Rohani, P. Modelling Infectious Diseases in Humans and Animals; Princeton University Press: Princeton, NJ, USA, 2008. [Google Scholar]
- Cooper, I.; Mondal, A.; Antonopoulos, C.G. A SIR model assumption for the spread of COVID-19 in different communities. Chaos Solitons Fractals 2020, 139, 110057. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mohammadi, A.; Meniailov, I.; Bazilevych, K.; Yakovlev, S.; Chumachenko, D. Comparative study of linear regression and SIR models of COVID-19 propagation in Ukraine before vaccination. Radioelectron. Comput. Syst. 2021, 5–18. [Google Scholar] [CrossRef]
- Nesteruk, I. COVID19 Pandemic Dynamics; Springer Nature: London, UK, 2021. [Google Scholar] [CrossRef]
- Grassly, N.; Fraser, C. Mathematical models of infectious disease transmission. Nat. Rev. Microbiol 2008, 6, 477–487. [Google Scholar] [CrossRef] [PubMed]
- Xavier, J.B.; Monk, J.M.; Poudel, S.; Norsigian, C.J.; Sastry, A.V.; Liao, C.; Bento, J.; Suchard, M.A.; Arrieta-Ortiz, M.L.; Peterson, E.J.; et al. Mathematical models to study the biology of pathogens and the infectious diseases they cause. iScience 2022, 25, 104079. [Google Scholar] [CrossRef]
- Cherniha, V.; Davydovych, A. Mathematical Model for the COVID-19 Outbreak and Its Applications. Symmetry 2020, 12, 990. [Google Scholar] [CrossRef]
- Thomas, P.J.; Marvell, A. Scaling of agent-based models to evaluate transmission risks of infectious diseases. Sci. Rep. 2023, 13, 75. [Google Scholar] [CrossRef]
- Davydovych, V.; Dutka, V.; Cherniha, R. Reaction–Diffusion Equations in Mathematical Models Arising in Epidemiology. Symmetry 2023, 15, 2025. [Google Scholar] [CrossRef]
- Siettos, C.I.; Russo, L. Mathematical modeling of infectious disease dynamics. Virulence 2013, 4, 295–306. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sweileh, W.M. Global research activity on mathematical modeling of transmission and control of 23 selected infectious disease outbreak. Glob. Health 2022, 18, 4. [Google Scholar] [CrossRef] [PubMed]
- COVID-19 Reinfection Data. Available online: https://coronavirus.health.ny.gov/covid-19-reinfection-data (accessed on 23 November 2024).
- Guedes, A.R.; Oliveira, M.S.; Tavares, B.M.; Luna-Muschi, A.; Lazari, C.d.S.; Montal, A.C.; de Faria, E.; Maia, F.L.; Barboza, A.d.S.; Leme, M.D.; et al. Reinfection rate in a cohort of healthcare workers over 2 years of the COVID-19 pandemic. Sci. Rep. 2023, 13, 712. [Google Scholar] [CrossRef] [PubMed]
- Flacco, M.E.; Soldato, G.; Martellucci, C.A.; Di Martino, G.; Carota, R.; Caponetti, A.; Manzoli, L. Risk of SARS-CoV-2 Reinfection 18 Months After Primary Infection: Population-Level Observational Study. Front. Public Health 2022, 10, 884121, 02 May 2022. Sec. Infectious Diseases: Epidemiology and Prevention. [Google Scholar] [CrossRef]
- Nesteruk, I. Endemic characteristics of SARS-CoV-2 infection. Sci. Rep. 2023, 13, 14841. [Google Scholar] [CrossRef]
- Slovakia Tested Most of the Country in Two Days. Here’s How They Did it and What They Found. Available online: https://edition.cnn.com/2020/11/02/europe/slovakia-mass-coronavirus-test-intl/index.html (accessed on 23 November 2024).
- Slovakia’s Second Round of Coronavirus Tests Draws Large Crowds. Available online: https://www.voanews.com/covid-19-pandemic/slovakias-second-round-coronavirus-tests-draws-large-crowds (accessed on 23 November 2024).
- У Хмельницькoму прoвели експеримент з масoвим тестуванням на COVID-19. Available online: https://podillyanews.com/2020/12/17/u-shkolah-hmelnytskogo-provely-eksperyment-z-testuvannyam-na-covid-19/ (accessed on 23 November 2024).
- Schreiber, P.W.; Scheier, T.; Wolfensberger, A.; Saleschus, D.; Vazquez, M.; Kouyos, R.; Zingg, W. Parallel dynamics in the yield of universal SARS-CoV-2 admission screening and population incidence. Sci. Rep. 2023, 13, 7296. [Google Scholar] [CrossRef]
- Fowlkes, A.L.; Yoon, S.K.; Lutrick, K.; Gwynn, L.; Burns, J.; Grant, L.; Phillips, A.; Ellingson, K.; Ferraris, M.; LeClair, M.; et al. Effectiveness of 2-Dose BNT162b2 (Pfizer BioNTech) mRNA Vaccine in Preventing SARS-CoV-2 Infection Among Children Aged 5–11 Years and Adolescents Aged 12–15 Years—PROTECT Cohort, July 2021–February 2022. MMWR Morb. Mortal. Wkly. Rep. 2022, 71, 422–428. [Google Scholar] [CrossRef] [PubMed]
- Shang, W.; Kang, L.; Cao, G.; Wang, Y.; Gao, P.; Liu, J.; Liu, M. Percentage of Asymptomatic Infections among SARS-CoV-2 Omicron Variant-Positive Individuals: A Systematic Review and Meta-Analysis. Vaccines 2022, 10, 1049. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rodger, C.; Kunkel, E.; Crowcroft, N.S.; Fitzpatrick, M.C.; de Melker, H.; Althouse, B.M.; Merkel, T.; Scarpino, S.V.; Koelle, K.; Friedman, L.; et al. Asymptomatic Infection and Transmission of Pertussis in Households: A Systematic Review. Clin. Infect. Dis. 2020, 70, 152–161. [Google Scholar] [CrossRef]
- Nesteruk, I. General SIR model for visible and hidden epidemic dynamics. Front. Artif. Intell. 2025, 8, 1559880. [Google Scholar] [CrossRef]
- Nesteruk, I. New reproduction numbers for the visible and real epidemic dynamics. MedRxiv 2025. [Google Scholar] [CrossRef]
- Confirmed Cases of Pertussis in England by Month-GOV.UK. Available online: https://www.gov.uk/government/publications/pertussis-epidemiology-in-england-2024/confirmed-cases-of-pertussis-in-england-by-month (accessed on 23 November 2024).
- Plackett, R.L. The discovery of the method of least squares (PDF). Biometrika 1972, 59, 239–251. [Google Scholar]
- Anthony, N.M.; Ling, H.; Liu, D. Stability of Dynamical Systems; Birkhäuser: Boston, MA, USA, 2008. [Google Scholar] [CrossRef]
- Böhmer, C.G.; Harko, T.; Sabau, S.V. Jacobi stability analysis of dynamical systems–applications in gravitation and cosmology. Adv. Theor. Math. Phys. 2012, 16, 1145–1196. [Google Scholar] [CrossRef]
- Martha, L.; James, A.; Braselton, P. (Eds.) Chapter 6-Systems of Differential Equations. Introductory Differential Equations, 4th ed.; Academic Press: London, UK, 2014; pp. 277–364. ISBN 9780124172197. Available online: https://www.sciencedirect.com/science/article/pii/B9780124172197000065 (accessed on 23 November 2024). [CrossRef]
- Births in England and Wales: 2023. Available online: https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/livebirths/bulletins/birthsummarytablesenglandandwales/2023 (accessed on 23 November 2024).
- COVID-19 Data Repository by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU). Available online: https://github.com/owid/covid-19-data/tree/master/public/data (accessed on 11 December 2023).
- Yun, J.; Kim, C.Y.; Son, S.H.; Bae, C.W.; Choi, Y.S.; Chung, S.H. Birth Rate Transition in the Republic of Korea: Trends and Prospects. J. Korean Med. Sci. 2022, 37, e304. [Google Scholar] [CrossRef]
- Austria Birth Rate 1950–2025. Available online: https://www.macrotrends.net/global-metrics/countries/AUT/austria/birth-rate (accessed on 23 November 2024).
- Austria Population. Available online: https://www.worldometers.info/world-population/austria-population/ (accessed on 23 November 2024).
- Zero-COVID. Available online: https://en.wikipedia.org/wiki/Zero-COVID (accessed on 23 November 2023).
- Nesteruk, I. Impact of vaccination and testing levels on the COVID-19 waves. J. Allergy Infect. Dis. 2024, 5, 44–55. Available online: https://probiologists.com/Uploads/Articles/11_638603156371379586.pdf (accessed on 23 November 2024). [CrossRef]
- Nesteruk, I. Mathematical simulations of the pertussis epidemic in England. In Proceedings of the International Workshop ProfIT AI 2024, Cambridge, MA, USA, 25–27 September 2024; Available online: https://ceur-ws.org/Vol-3777/paper13.pdf (accessed on 23 November 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nesteruk, I. How Re-Infections and Newborns Can Impact Visible and Hidden Epidemic Dynamics? Computation 2025, 13, 113. https://doi.org/10.3390/computation13050113
Nesteruk I. How Re-Infections and Newborns Can Impact Visible and Hidden Epidemic Dynamics? Computation. 2025; 13(5):113. https://doi.org/10.3390/computation13050113
Chicago/Turabian StyleNesteruk, Igor. 2025. "How Re-Infections and Newborns Can Impact Visible and Hidden Epidemic Dynamics?" Computation 13, no. 5: 113. https://doi.org/10.3390/computation13050113
APA StyleNesteruk, I. (2025). How Re-Infections and Newborns Can Impact Visible and Hidden Epidemic Dynamics? Computation, 13(5), 113. https://doi.org/10.3390/computation13050113