Non-Iterative Recovery Information Procedure with Database Inspired in Hopfield Neural Networks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Theoretical Background
2.2. Hopfield Neural Network as Associative Memory
Algorithm 1 Information recovery with HNN-based method. |
|
2.3. Interpretation
3. Proposed Procedure
Algorithm 2 Recovery Procedure (RP). |
|
3.1. Capacity of Reconstruction
3.2. Extension to Weighted Information Recovery Procedure
Algorithm 3 Weighted Recovery Procedure (WRP). |
|
4. Results
Numerical Example
5. Discussion
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rojas, R. Neural Networks: A Systematic Introdution; Springer Science and Business Media: New York, NY, USA, 2013. [Google Scholar]
- Hopfield, J.J.; Tank, D.W. “Neural” computation of decisions in optimization problems. Biol. Cybern. 1985, 52, 141–152. [Google Scholar] [CrossRef] [PubMed]
- Halder, A.; Caluya, K.F.; Travacca, B.; Moura, S.J. Hopfield Neural Network Flow: A Geometric Viewpoint. IEEE Trans. Neural Networks Learn. Syst. 2020, 31, 4869–4880. [Google Scholar] [CrossRef] [PubMed]
- Gil, J.; Martinez Torres, J.; González-Crespo, R. The application of artificial intelligence in project management research: A review. Int. J. Interact. Multimed. Artif. Intell. 2021, 6, 1–13. [Google Scholar] [CrossRef]
- Neshat, M.; Zadeh, A.E. Hopfield neural network and fuzzy Hopfield neural network for diagnosis of liver disorders. In Proceedings of the 2010 5th IEEE International Conference Intelligent Systems, London, UK, 7–9 July 2010. [Google Scholar] [CrossRef]
- Zhong, C.; Luo, C.; Chu, Z.; Gan, W. A continuous hopfield neural network based on dynamic step for the traveling salesman problem. In Proceedings of the 2017 International Joint Conference on Neural Networks (IJCNN), Anchorage, AK, USA, 14–19 May 2017; pp. 3318–3323. [Google Scholar] [CrossRef]
- Ma, X.; Zhong, L.; Chen, X. Application of Hopfield Neural Network Algorithm in Mathematical Modeling. In Proceedings of the 2023 IEEE 12th International Conference on Communication Systems and Network Technologies (CSNT), Bhopal, India, 8–9 April 2023; pp. 591–595. [Google Scholar] [CrossRef]
- Sang, N.; Zhang, T. Segmentation of FLIR images by Hopfield neural network with edge constraint. Pattern Recognit. 2001, 34, 811–821. [Google Scholar] [CrossRef]
- Haddouch, K.; Elmoutaoukil, K.; Ettaouil, M. Solving the Weighted Constraint Satisfaction Problems Via the Neural Network Approach. Int. J. Interact. Multimed. Artif. Intell. 2016, 4, 56–60. [Google Scholar] [CrossRef]
- Bin Mohd Kasihmuddin, M.S.; Bin Mansor, M.A.; Sathasivam, S. Robust artificial immune system in the Hopfield network for maximum k-satisfiability. Int. J. Interact. Multimed. Artif. Intell. 2017, 4, 63–71. [Google Scholar]
- Kasihmuddin, M.S.B.M.; Mansor, M.A.B.; Sathasivam, S. Genetic algorithm for restricted maximum k-satisfiability in the Hopfield network. Int. J. Interact. Multimed. Artif. Intell. 2016, 4, 52–60. [Google Scholar]
- Faydasicok, O. A new Lyapunov functional for stability analysis of neutral-type Hopfield neural networks with multiple delays. Neural Netw. 2020, 129, 288–297. [Google Scholar] [CrossRef] [PubMed]
- Rout, S.; Srivastava, P.; Majumdar, J. Multi-modal image segmentation using a modified Hopfield neural network. Pattern Recognit. 1998, 31, 743–750. [Google Scholar] [CrossRef]
- Cursino, C.; Dias, L.A.V. Extended hopfield neural network: A complementary approach. Neural Netw. 1988, 1, 225. [Google Scholar] [CrossRef]
- Jiménez, M.; Avedillo, M.J.; Linares-Barranco, B.; Núñez, J. Learning algorithms for oscillatory neural networks as associative memory for pattern recognition. Front. Neurosci. 2023, 17, 1257611. [Google Scholar] [CrossRef] [PubMed]
- Dawei, Q.; Peng, Z.; Xuefei, Z.; Xuejing, J.; Haijun, W. Appling a Novel Cost Function to Hopfield Neural Network for Defects Boundaries Detection of Wood Image. Eurasip J. Adv. Signal Process. 2010, 2010, 427878. [Google Scholar]
- Kobayashi, M. Two-Level Complex-Valued Hopfield Neural Networks. IEEE Trans. Neural Networks Learn. Syst. 2021, 32, 2274–2278. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Chen, J.; Zhang, K.; Sigal, L. Training feedforward neural nets in Hopfield-energy-based configuration: A two-step approach. Pattern Recognit. 2024, 145, 109954. [Google Scholar] [CrossRef]
- Gladis, D.; Thangavel, P.; Nagar, A.K. Noise removal using hysteretic Hopfield tunnelling network in message transmission systems. Int. J. Comput. Math. 2011, 88, 650–660. [Google Scholar] [CrossRef]
- Deb, T.; Ghosh, A.K.; Mukherjee, A. Singular value decomposition applied to associative memory of Hopfield neural network. Mater. Today Proc. 2018, 5, 2222–2228. [Google Scholar] [CrossRef]
- Mansour, W.; Ayoubi, R.; Ziade, H.; Velazco, R.; El Falou, W. An optimal implementation on FPGA of a hopfield neural network. Adv. Artif. Neural Syst. 2011, 2011, 189368. [Google Scholar] [CrossRef]
- Hong, Q.; Li, Y.; Wang, X. Memristive continuous Hopfield neural network circuit for image restoration. Neural Comput. Appl. 2020, 32, 8175–8185. [Google Scholar] [CrossRef]
- Krotov, D.; Hopfield, J. Large associative memory problem in neurobiology and machine learning. arXiv 2020, arXiv:2008.06996. [Google Scholar]
- Yuille, A.L.; Rangarajan, A. The Concave-Convex Procedure. Neural Comput. 2003, 15, 915–936. [Google Scholar] [CrossRef] [PubMed]
- Googleapis.com. Open Images V7- Download. 2022. Available online: https://storage.googleapis.com/openimages/web/download_v7.html (accessed on 10 September 2024).
Algorithm Used | Image 1 | Image 2 | Image 3 | Image 4 |
---|---|---|---|---|
Corrupted Data with Initial Metric | 0.854 | 0.848 | 0.940 | 0.759 |
Algorithm 1 with Final Metric (1 iteration) | 0.372 | 0.261 | 0.143 | 0.588 |
Algorithm 1 with Final Metric (10 iterations) | 0.092 | 0.175 | 0.025 | 0.113 |
Algorithm 2 with Final Metric (single iteration) | 0.000 | 0.000 | 0.000 | 0.759 |
Algorithm | Image | Image | Image | Image | Image |
---|---|---|---|---|---|
Used | 1 | 2 | 3 | 4 | 5 |
Percentage probability of pixel degradation | 19% | 38% | 57% | 76% | 95% |
Algorithm 2 with Final Metric (1 iteration) | 0.00 | 0.00 | 0.00 | 0.00 | 0.64 |
Algorithm 3 with Final Metric (1 iteration) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Solis, C.U.; Morales, J.; Montelongo, C.M. Non-Iterative Recovery Information Procedure with Database Inspired in Hopfield Neural Networks. Computation 2025, 13, 95. https://doi.org/10.3390/computation13040095
Solis CU, Morales J, Montelongo CM. Non-Iterative Recovery Information Procedure with Database Inspired in Hopfield Neural Networks. Computation. 2025; 13(4):95. https://doi.org/10.3390/computation13040095
Chicago/Turabian StyleSolis, Cesar U., Jorge Morales, and Carlos M. Montelongo. 2025. "Non-Iterative Recovery Information Procedure with Database Inspired in Hopfield Neural Networks" Computation 13, no. 4: 95. https://doi.org/10.3390/computation13040095
APA StyleSolis, C. U., Morales, J., & Montelongo, C. M. (2025). Non-Iterative Recovery Information Procedure with Database Inspired in Hopfield Neural Networks. Computation, 13(4), 95. https://doi.org/10.3390/computation13040095