Transport Characteristics of Small Molecules Diffusing near Deforming Blood Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Method Overview
2.2. Membrane Mechanics
2.3. Flow Dynamics
2.4. Small Molecule Dynamics
2.5. Non-Dimensional Numbers
3. Results and Discussion
3.1. Validation of Brownian Motion in Shear Flow
3.2. Behavior of Particles near a Spherical Cell
3.3. Behavior of Particles near a Red Blood Cell
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kalogeris, T.; Baines, C.P.; Krenz, M.; Korthuis, R.J. Ischemia/Reperfusion. Compr. Physiol. 2016, 7, 113–170. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, L.; Li, X.F. Hypoxia and the Tumor Microenvironment. Technol. Cancer Res. Treat. 2021, 20, 15330338211036304. [Google Scholar] [CrossRef] [PubMed]
- Pittman, R.N. Oxygen transport in the microcirculation and its regulation. Microcirculation 2013, 20, 117–137. [Google Scholar] [CrossRef] [PubMed]
- Duling, B.R.; Berne, R.M. Longitudinal Gradients in Periarteriolar Oxygen Tension. Circ. Res. 1970, 27, 669–678. [Google Scholar] [CrossRef] [PubMed]
- Vanderkooi, J.M.; Maniara, G.; Green, T.J.; Wilson, D.F. An optical method for measurement of dioxygen concentration based upon quenching of phosphorescence. J. Biol. Chem. 1987, 262, 5476–5482. [Google Scholar] [CrossRef]
- Golub, A.S.; Pittman, R.N. Recovery of radial Po2 profiles from phosphorescence quenching measurements in microvessels. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2002, 132, 169–176. [Google Scholar] [CrossRef]
- Pittman, R.N.; Duling, B.R. Measurement of percent oxyhemoglobin in the microvasculature. J. Appl. Physiol. 1975, 38, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Krogh, A. The number and distribution of capillaries in muscles with calculations of the oxygen pressure head necessary for supplying the tissue. J. Physiol. 1919, 52, 409–415. [Google Scholar] [CrossRef]
- Federspiel, W.J.; Popel, A.S. A Theoretical Analysis of the Effect of the Particulate Nature of Blood on Oxygen Release in Capillaries. Microvasc. Res. 1986, 32, 164–189. [Google Scholar] [CrossRef]
- Roca, J.; Agusti, A.G.; Alonso, A.; Poole, D.C.; Viegas, C.; Barbera, J.A.; Rodriguez-Roisin, R.; Ferrer, A.; Wagner, P.D. Effects of training on muscle O2 transport at VO2max. J. Appl. Physiol. 1992, 73, 1067–1076. [Google Scholar] [CrossRef]
- Golub, A.S.; Pittman, R.N. Erythrocyte-associated transients in Po2 revealed in capillaries of rat mesentery. Am. J. Physiol. Heart Circ. Physiol. 2005, 288, H2735–H2743. [Google Scholar] [CrossRef]
- Afas, K.C.; Vijay, R.; Goldman, D. A two-compartment model of oxygen transport in skeletal muscle using continuously distributed capillaries. Math. Biosci. 2021, 333, 108535. [Google Scholar] [CrossRef] [PubMed]
- Nix, S.; Imai, Y.; Matsunaga, D.; Yamaguchi, T.; Ishikawa, T. Lateral migration of a spherical capsule near a plane wall in Stokes flow. Phys. Rev. E 2014, 90, 043009. [Google Scholar] [CrossRef] [PubMed]
- Nix, S.; Imai, Y.; Ishikawa, T. Lateral migration of a capsule in a parabolic flow. J. Biomech. 2016, 49, 2249–2254. [Google Scholar] [CrossRef] [PubMed]
- Evans, E.; Fung, Y.C. Improved measurements of the erythrocyte geometry. Microvasc. Res. 1972, 4, 335–347. [Google Scholar] [CrossRef] [PubMed]
- Skalak, R.; Tozeren, A.; Zarda, R.; Chien, S. Strain Energy Function of Red Blood Cell Membranes. Biophys. J. 1973, 13, 245–264. [Google Scholar] [CrossRef]
- Helfrich, W. Elastic Properties of Lipid Bilayers: Theory and Possible Experiments. Z. Naturforschung C 1973, 28, 693–703. [Google Scholar] [CrossRef]
- Katayama, Y.; Terauti, R. Brownian motion of a single particle under shear flow. Eur. J. Phys. 1996, 17, 136–140. [Google Scholar] [CrossRef]
- Goldstick, T.K.; Ciuryla, V.T.; Zuckerman, L. Diffusion of oxygen in plasma and blood. Adv. Exp. Med. Biol. 1976, 75, 183–190. [Google Scholar] [CrossRef]
- Abkarian, M.; Viallat, A. Vesicles and red blood cells in shear flow. Soft Matter 2008, 4, 653. [Google Scholar] [CrossRef] [PubMed]
- Walter, J.; Salsac, A.V.; Barthès-Biesel, D. Ellipsoidal capsules in simple shear flow: Prolate versus oblate initial shapes. J. Fluid Mech. 2011, 676, 318–347. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nix, S. Transport Characteristics of Small Molecules Diffusing near Deforming Blood Cells. Computation 2025, 13, 47. https://doi.org/10.3390/computation13020047
Nix S. Transport Characteristics of Small Molecules Diffusing near Deforming Blood Cells. Computation. 2025; 13(2):47. https://doi.org/10.3390/computation13020047
Chicago/Turabian StyleNix, Stephanie. 2025. "Transport Characteristics of Small Molecules Diffusing near Deforming Blood Cells" Computation 13, no. 2: 47. https://doi.org/10.3390/computation13020047
APA StyleNix, S. (2025). Transport Characteristics of Small Molecules Diffusing near Deforming Blood Cells. Computation, 13(2), 47. https://doi.org/10.3390/computation13020047