Digging SiC Semiconductor Efficiency for Trapping Main Group Metals in Cell Batteries: Application of Computational Chemistry by Mastering the Density Functional Theory Study
Abstract
1. Introduction
2. Theoretical Backgrounds, Materials and Methods
3. Results and Discussion
3.1. Charge Density Differences Analysis
3.2. Total Density of States
3.3. Molecular Electrostatic Potential (ESP)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fan, X.; Deng, D.; Li, Y.; Wu, Q.-H. Recent Progress in SiC Nanostructures as Anode Materials for Lithium-Ion Batteries. Curr. Mater. Sci. 2023, 16, 18–29. [Google Scholar] [CrossRef]
- Zhao, X.; Lehto, V.P. Challenges and prospects of nanosized silicon anodes in lithium-ion batteries. Nanotechnology 2021, 32, 042002. [Google Scholar] [CrossRef]
- Wen, Q.; Qu, F.; Yu, Z.; Graczyk-Zajac, M.; Xiong, X.; Riedel, R. Si-based polymer-derived ceramics for energy conversion and storage. J. Adv. Ceram. 2022, 11, 197–246. [Google Scholar] [CrossRef]
- Ge, M.; Cao, C.; Biesold, G.M.; Sewell, C.D.; Hao, S.-M.; Huang, J.; Zhang, W.; Lai, Y.; Lin, Z. Silicon Anodes: Recent Advances in Silicon-Based Electrodes: From Fundamental Research toward Practical Applications. Adv. Mater. 2021, 33, 2004577. [Google Scholar] [CrossRef] [PubMed]
- Shao, G.; Hanaor, D.A.H.; Wang, J.; Kober, D.; Li, S.; Wang, X.; Shen, X.; Bekheet, M.F.; Gurlo, A. Polymer-Derived SiOC Integrated with a Graphene Aerogel As a Highly Stable Li-Ion Battery Anode. ACS Appl. Mater. Interfaces 2020, 12, 46045. [Google Scholar] [CrossRef] [PubMed]
- Mollaamin, F. Anchoring of 2D layered materials of Ge5Si5O20 for (Li/Na/K)-(Rb/Cs) batteries towards Eco-friendly energy storage. BMC Chem. 2025, 19, 233. [Google Scholar] [CrossRef]
- Wilamowska-Zawlocka, M.; Puczkarski, P.; Grabowska, Z.; Kaspar, J.; Graczyk-Zajac, M.; Riedel, R.; Sorarù, G.D. Silicon oxycarbide ceramics as anodes for lithium ion batteries: Influence of carbon content on lithium storage capacity. RSC Adv. 2016, 6, 104597. [Google Scholar] [CrossRef]
- Mollaamin, F.; Monajjemi, M. In Situ Ti-Embedded SiC as Chemiresistive Nanosensor for Safety Monitoring of CO, CO2, NO, NO2: Molecular Modelling by Conceptual Density Functional Theory. Russ. J. Phys. Chem. B 2024, 18, 49–66. [Google Scholar] [CrossRef]
- Liu, Q.; Fu, C.; Xiao, B.; Li, Y.; Cheng, J.; Liu, Z.; Yang, X.; Xu, X.; Cui, H.; Li, Q. Graphitic SiC: A potential anode material for Na-ion battery with extremely high storage capacity. Int. J. Quantum Chem. 2021, 121, e26608. [Google Scholar] [CrossRef]
- Huczko, A.; Dąbrowska, A.; Savchyn, V.; Popov, A.I.; Karbovnyk, I. Silicon carbide nanowires: Synthesis and cathodoluminescence. Phys. Status Solidi (B) 2009, 246, 2806–2808. [Google Scholar] [CrossRef]
- Xu, H.; Li, X.; Tong, Z.; Zhang, B.; Ji, H. Thermal Radiation Shielding and Mechanical Strengthening of Mullite Fiber/SiC Nanowire Aerogels Using In Situ Synthesized SiC Nanowires. Materials 2022, 15, 3522. [Google Scholar] [CrossRef]
- Shi, R.; Liu, Z.; Liu, W.; Kuang, J. Preparation and Electromagnetic Wave Absorption Properties of N-Doped SiC Nanowires. Materials 2023, 16, 5765. [Google Scholar] [CrossRef]
- Peng, Q.; Rehman, J.; Ullah, M.; Tighezza, A.M.; Hanif, M.B.; Shibl, M.F.; Dai, J. Anchoring of K and Na on the surface of a novel SiC monolayer: First-principles predictions. J. Energy Storage 2024, 104, 114435. [Google Scholar] [CrossRef]
- Khan, A.A.; Ahmad, R.; Ahmad, I. Silicon carbide and III-Nitrides nanosheets: Promising anodes for Mg-ion batteries. Mater. Chem. Phys. 2021, 257, 123785. [Google Scholar] [CrossRef]
- Kamiński, M.; Król, K.; Kwietniewski, N.; Myśliwiec, M.; Sochacki, M.; Stonio, B.; Kisiel, R.; Martychowiec, A.; Racka-Szmidt, K.; Werbowy, A.; et al. The Overview of Silicon Carbide Technology: Status, Challenges, Key Drivers, and Product Roadmap. Materials 2025, 18, 12. [Google Scholar] [CrossRef] [PubMed]
- HaTaha, O.; El Mahdy, A.M.; El Sayed El Shemy, F.; Hassan, M.M. Hydrogen storage in SiC, GeC, and SnC nanocones functionalized with nickel, Density Functional Theory—Study. Int. J. Quantum Chem. 2023, 123, e27023. [Google Scholar] [CrossRef]
- Wei, T.; Zhou, Y.; Sun, C.; Guo, X.; Xu, S.; Chen, D.; Tang, Y. An intermittent lithium deposition model based on CuMn-bimetallic MOF derivatives for composite lithium anode with ultrahigh areal capacity and current densities. Nano Res. 2024, 17, 2763–2769. [Google Scholar] [CrossRef]
- Yadav, A. Monolayered Carbides of Main Group Elements (Si, Ge, Sn and Pb) for NO2 Gas Sensing: Insights from First-Principle Studies. Silicon 2022, 14, 12683–12692. [Google Scholar] [CrossRef]
- Liu, W.; Li, S.; Pan, H.; Zhang, Y.; Pan, Z.; Wang, S.; Ren, Y.; Qin, G. Development of Novel Mg-Al-Mn-Based Alloys with High-Strength and Ductility via Co-Addition of Ce and Ca. Metals 2025, 15, 361. [Google Scholar] [CrossRef]
- Mollaamin, F.; Monajjemi, M. Electric and Magnetic Evaluation of Aluminum–Magnesium Nanoalloy Decorated with Germanium Through Heterocyclic Carbenes Adsorption: A Density Functional Theory Study. Russ. J. Phys. Chem. B 2023, 17, 658–672. [Google Scholar] [CrossRef]
- Mollaamin, F.; Monajjemi, M. Adsorption ability of Ga5N10 nanomaterial for removing metal ions contamination from drinking water by DFT. Int. J. Quantum Chem. 2024, 124, e27348. [Google Scholar] [CrossRef]
- Tareq, F.K.; Rudra, S. Enhancing the performance of silicon-based anode materials for alkali metal (Li, Na, K) ion battery: A review on advanced strategies. Mater. Today Commun. 2024, 39, 108653. [Google Scholar] [CrossRef]
- Dong, Z.; Gu, H.; Du, W.; Feng, Z.; Zhang, C.; Jiang, Y.; Zhu, T.; Chen, G.; Chen, J.; Liu, Y. Si/Ti3SiC2 composite anode with enhanced elastic modulus and high electronic conductivity for lithium-ion batteries. J. Power Sources 2019, 431, 55–62. [Google Scholar] [CrossRef]
- Kohn, W.; Sham, L.J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965, 140, A1133–A1138. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, L.; Glenna, D.M.; Jana, A.; Perez, C.M.; Qian, J. Real-space Kohn–Sham density functional theory for complex energy applications. Chem. Commun. 2025, 61, 10273–10286. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef]
- Feng, H.; Cheng, Z.; Lu, Z.; He, Q. Advances in DFT-Based Computational Tribology: A Review. Lubricants 2025, 13, 483. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef]
- Henkelman, G.; Arnaldsson, A.; Jónsson, H. A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci. 2006, 36, 354–360. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision C.01; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Dennington, R.; Keith, T.A.; Millam, J.M. (Eds.) GaussView, Version 6.06.16; Semichem Inc.: Shawnee Mission, KS, USA, 2016. [Google Scholar]
- Xu, Z.; Qin, C.; Yu, Y.; Jiang, G.; Zhao, L. First-principles study of adsorption, dissociation, and diffusion of hydrogen on α-U (110) surface. AIP Adv. 2024, 14, 055114. [Google Scholar] [CrossRef]
- Mollaamin, F.; Monajjemi, M. Graphene-based resistant sensor decorated with Mn, Co, Cu for nitric oxide detection: Langmuir adsorption & DFT method. Sens. Rev. 2023, 43, 266–279. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef]
- Lu, T. A comprehensive electron wavefunction analysis toolbox for chemists, Multiwfn. J. Chem. Phys. 2024, 161, 082503. [Google Scholar] [CrossRef] [PubMed]
- Murray, J.S.; Politzer, P. The electrostatic potential: An overview. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2011, 1, 153–163. [Google Scholar] [CrossRef]
- Wu, S.; Ren, M. Industrial Basic Capacity Research: Theory and Measurement. Systems 2024, 12, 502. [Google Scholar] [CrossRef]
- Bašić, H.; Bobanac, V.; Pandžić, H. Determination of Lithium-Ion Battery Capacity for Practical Applications. Batteries 2023, 9, 459. [Google Scholar] [CrossRef]
- Mayer, I. Improved definition of bond orders for correlated wave functions. Chem. Phys. Lett. 2012, 544, 83–86. [Google Scholar] [CrossRef]
- Mollaamin, F.; Monajjemi, M. Doping of Graphene Nanostructure with Iron, Nickel and Zinc as Selective Detector for the Toxic Gas Removal: A Density Functional Theory Study. C 2023, 9, 20. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F. Bond Order Analysis Based on the Laplacian of Electron Density in Fuzzy Overlap Space. J. Phys. Chem. A 2013, 117, 3100–3108. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, X.; Pedrycz, W.; Yang, S.-H.; Boutat, D. Consensus of T-S Fuzzy Fractional-Order, Singular Perturbation, Multi-Agent Systems. Fractal Fract. 2024, 8, 523. [Google Scholar] [CrossRef]








| Heteroclusters | C | D | EHOMO | ELUMO | ∆E | Es × 10−3 |
|---|---|---|---|---|---|---|
| SiLiC | 100.20 | 1.25 | −5.20 | −4.20 | 1.00 | −509.21 |
| SiNaC | 94.53 | 1.18 | −4.96 | −4.43 | 0.52 | −499.96 |
| SiKC | 453.14 | 0.9438 | −5.05 | −4.13 | 0.92 | −534.83 |
| SiBeC | 198.86 | 1.09 | −5.30 | −4.33 | 0.97 | −518.21 |
| SiMgC | 188.18 | 0.29 | −5.06 | −4.12 | 0.89 | −500.80 |
| SiBC | 2605.62 | 0.61 | −5.49 | −4.61 | 0.88 | −530.75 |
| SiAlC | 1709.64 | 1.26 | −5.35 | −4.40 | 0.95 | −502.24 |
| SiGaC | 895.66 | 1.11 | −5.36 | −4.41 | 0.95 | −502.32 |
| Heteroclusters | Bond Type | Fuzzy |
|---|---|---|
| SiLiC | Si(13)–Si(28) | 0.90 |
| C(10)–Li(32) | 0.36 | |
| C(12)–Li(31) | 0.18 | |
| C(24)–Li(32) | 0.34 | |
| C(26)–Li(31) | 0.22 | |
| SiNaC | Si(13)–Si(28) | 0.87 |
| C(10)–Na(32) | 0.53 | |
| C(12)–Na(31) | 0.33 | |
| C(24)–Na(32) | 0.51 | |
| C(26)–Na(31) | 0.39 | |
| SiKC | Si(13)–Si(28) | 0.86 |
| C(10)–K(32) | 0.59 | |
| C(12)–K(31) | 0.35 | |
| C(24)–K(32) | 0.58 | |
| C(26)–K(31) | 0.42 | |
| SiBeC | Si(13)–Si(28) | 0.91 |
| C(10)–Be(32) | 0.66 | |
| C(12)–Be(31) | 0.39 | |
| C(24)–Be(32) | 0.63 | |
| C(26)–Be(31) | 0.49 | |
| SiMgC | Si(13)–Si(28) | 0.88 |
| C(10)–Mg(32) | 0.77 | |
| C(12)–Mg(31) | 0.51 | |
| C(24)–Mg(32) | 0.75 | |
| C(26)–Mg(31) | 0.60 | |
| SiBC | Si(13)–Si(28) | 0.91 |
| C(10)–B(32) | 0.78 | |
| C(12)–B(31) | 0.42 | |
| C(24)–B(32) | 0.79 | |
| C(26)–B(31) | 0.51 | |
| SiAlC | Si(13)–Si(28) | 0.88 |
| C(10)–Al(32) | 0.91 | |
| C(12)–Al(31) | 0.52 | |
| C(24)–Al(32) | 0.90 | |
| C(26)–Al(31) | 0.62 | |
| SiGaC | Si(13)–Si(28) | 0.86 |
| C(10)–Ga(32) | 0.95 | |
| C(12)–Ga(31) | 0.54 | |
| C(24)–Ga(32) | 0.95 | |
| C(26)–Ga(31) | 0.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mollaamin, F.; Monajjemi, M. Digging SiC Semiconductor Efficiency for Trapping Main Group Metals in Cell Batteries: Application of Computational Chemistry by Mastering the Density Functional Theory Study. Computation 2025, 13, 265. https://doi.org/10.3390/computation13110265
Mollaamin F, Monajjemi M. Digging SiC Semiconductor Efficiency for Trapping Main Group Metals in Cell Batteries: Application of Computational Chemistry by Mastering the Density Functional Theory Study. Computation. 2025; 13(11):265. https://doi.org/10.3390/computation13110265
Chicago/Turabian StyleMollaamin, Fatemeh, and Majid Monajjemi. 2025. "Digging SiC Semiconductor Efficiency for Trapping Main Group Metals in Cell Batteries: Application of Computational Chemistry by Mastering the Density Functional Theory Study" Computation 13, no. 11: 265. https://doi.org/10.3390/computation13110265
APA StyleMollaamin, F., & Monajjemi, M. (2025). Digging SiC Semiconductor Efficiency for Trapping Main Group Metals in Cell Batteries: Application of Computational Chemistry by Mastering the Density Functional Theory Study. Computation, 13(11), 265. https://doi.org/10.3390/computation13110265
