Relation Models of Surface Parameters and Backscattering (or Radiation) Fields as a Tool for Solving Remote Sensing Problems
Abstract
:1. Introduction
2. Materials and Methods
- By classifying the type of systems that can be used (active, passive).
- By classifying the obtaining method (electrodynamic, empirical).
- By classifying the type of described surface (ground, water).
- By classifying the type of covering (ground surface without vegetation, surface with vegetation below a defined level, surface with high vegetation, smooth water surface, water surface with foam, surface covered with snow or ice).
- By classifying the ability to estimate atmospheric parameters (taking into account the atmosphere impact, along with the ability to estimate atmospheric parameters).
3. Results
3.1. Electrodynamic Models of Brightness Temperature
3.1.1. Electrodynamic Model of Flat Surface
3.1.2. Surface Model with Small-Scale Roughness
3.1.3. Surface Model with Large-Scale Roughness
3.1.4. Two-Scale Surface Model
3.2. Empirical Models of Brightness Temperature
3.2.1. Sea Surface with Foam
3.2.2. Model
3.2.3. Model
3.2.4. Atmosphere–Surface Regression Model
3.3. Electrodynamic Surface Models for Active Remote Sensing
3.3.1. Electrodynamic Model of a Flat Surface
3.3.2. Surface Model with Small-Scale Roughness
3.3.3. Surface Model with Large-Scale Roughness
3.3.4. Two-Scale Surface Model
3.4. Empirical Models of Surfaces in Active Remote Sensing
3.4.1. Exponential Model
3.4.2. Oh’s Model
3.4.3. Empirical Model of a Surface with Vegetation
3.4.4. Dubois Empirical Model
3.4.5. Model with Cylindrical Reflectors
3.4.6. Integral Equation Model
3.4.7. Model with Near-Surface Wind
3.4.8. Shi’s Model Algorithm
3.4.9. Empirical Model of Backscattering from Snow
3.5. Model Selection Algorithm
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bai, X.; Zheng, D.; Wen, J.; Wang, X.; van der Velde, R. Using a Discrete Scattering Model to Constrain Water Cloud Model for Simulating Ground-Based Scatterometer Measurements and Retrieving Soil Moisture. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 9424–9434. [Google Scholar] [CrossRef]
- Pfreundschuh, S.; Eriksson, P.; Buehler, S.A.; Brath, M.; Duncan, D.; Larsson, R.; Ekelund, R. Synergistic radar and radiometer retrievals of ice hydrometeors. Atmos. Meas. Tech. 2020, 13, 4219–4245. [Google Scholar] [CrossRef]
- Di, H.; Yuan, Y.; Yan, Q.; Xin, W.; Li, S.; Wang, J.; Wang, Y.; Zhang, L.; Hua, D. Determination of atmospheric column condensate using active and passive remote sensing technology. Atmos. Meas. Tech. 2022, 15, 3555–3567. [Google Scholar] [CrossRef]
- Djalalova, I.V.; Turner, D.D.; Bianco, L.; Wilczak, J.M.; Duncan, J.; Adler, B.; Gottas, D. Improving thermodynamic profile retrievals from microwave radiometers by including radio acoustic sounding system (RASS) observations. Atmos. Meas. Tech. 2022, 15, 521–537. [Google Scholar] [CrossRef]
- Renju, R.; Suresh Raju, C.; Swathi, R.; Milan, V.G. Retrieval of atmospheric temperature and humidity profiles over a tropical coastal station from ground-based Microwave Radiometer using deep learning technique. J. Atmos. Sol. Terr. Phys. 2023, 249, 106094. [Google Scholar] [CrossRef]
- Crewell, S.; Czekala, H.; Löhnert, U.; Simmer, C.; Rose, T.; Zimmermann, R.; Zimmermann, R. Microwave Radiometer for Cloud Carthography: A 22-channel ground-based microwave radiometer for atmospheric research. Radio Sci. 2001, 36, 621–638. [Google Scholar] [CrossRef]
- Walbröl, A.; Crewell, S.; Engelmann, R.; Orlandi, E.; Griesche, H.; Radenz, M.; Hofer, J.; Althausen, D.; Maturilli, D.; Ebell, K. Atmospheric temperature, water vapour and liquid water path from two microwave radiometers during MOSAiC. Sci. Data 2022, 9, 534. [Google Scholar] [CrossRef]
- Wei, E. Effective medium approximation model of sea foam layer microwave emissivity of a vertical profile, International Journal of Remote Sensing. Int. J. Remote Sens. 2013, 34, 1180–1193. [Google Scholar] [CrossRef]
- Du, L.; Pang, Y.; Wang, Q.; Huang, C.; Bai, Y.; Chen, D.; Lu, W.; Kong, D. A LiDAR biomass index-based approach for tree- and plot-level biomass mapping over forest farms using 3D point clouds. Remote Sens. Environ. 2023, 290, 113543. [Google Scholar] [CrossRef]
- Li, T.; Mu, T.; Liu, G.; Yang, X.; Zhu, G.; Shang, C. A Method of Soil Moisture Content Estimation at Various Soil Organic Matter Conditions Based on Soil Reflectance. Remote Sens. 2022, 14, 2411. [Google Scholar] [CrossRef]
- Zheng, X.; Feng, Z.; Xu, H.; Sun, Y.; Li, L.; Li, B.; Jiang, T.; Li, X.; Li, X. A New Soil Moisture Retrieval Algorithm from the L-Band Passive Microwave Brightness Temperature Based on the Change Detection Principle. Remote Sens. 2020, 12, 1303. [Google Scholar] [CrossRef]
- Schulte, R.M.; Kummerow, C.D.; Berg, W.; Reising, S.C.; Brown, S.T.; Gaier, T.C.; Lim, B.H.; Padmanabhan, S. A Passive Microwave Retrieval Algorithm with Minimal View-Angle Bias: Application to the TEMPEST-D CubeSat Mission. J. Atmos. Ocean. Technol. 2020, 37, 197–210. [Google Scholar] [CrossRef]
- Kelkar, R.; Tiwari, V.; Prasad, S. Retrieval of sea surface temperature from INSAT-IB radiometer measurements using a multi -channel simulation approach. Mausam 1989, 40, 25–30. [Google Scholar] [CrossRef]
- Hong, Z.; Moreno, H.A.; Li, Z.; Li, S.; Greene, J.S.; Hong, Y.; Alvarez, L.V. Triple Collocation of Ground-, Satellite- and Land Surface Model-Based Surface Soil Moisture Products in Oklahoma—Part I: Individual Product Assessment. Remote Sens. 2022, 14, 5641. [Google Scholar] [CrossRef]
- Wu, X. Assessment of Effective Roughness Parameters for Simulating Sentinel-1A Observation and Retrieving Soil Moisture over Sparsely Vegetated Field. Remote Sens. 2022, 14, 6020. [Google Scholar] [CrossRef]
- Cimini, D.; Shaw, J.A.; Westwater, E.R.; Han, Y.; Irisov, V.; Leuski, V.; Churnside, J.H. Air temperature profile and air/sea temperature difference measurements by infrared and microwave scanning radiometers. Radio Sci. 2003, 38, 8045. [Google Scholar] [CrossRef]
- Brown, S.T.; Ruf, C.S.; Lyzenga, D.R. An emissivity-based wind vector retrieval algorithm for the WindSat polarimetric radiometer. IEEE Trans. Geosci. Remote Sens. 2006, 44, 611–621. [Google Scholar] [CrossRef]
- Mitnik, L.M.; Mitnik, M.L. Retrieval of atmospheric and ocean surface parameters from ADEOS-II Advanced Microwave Scanning Radiometer (AMSR) data: Comparison of errors of global and regional algorithms. Radio Sci. 2003, 38, 8065. [Google Scholar] [CrossRef]
- Westwater, E.R.; Han, Y.; Shupe, M.D.; Matrosov, S.Y. Analysis of integrated cloud liquid and precipitable water vapor retrievals from microwave radiometers during the Surface Heat Budget of the Arctic Ocean project. Geophys. Res. 2001, 106, 32019–32030. [Google Scholar] [CrossRef]
- Pathiranage, D.S.; Leigh, L.; Pinto, C.T. Evaluation of Low-Cost Radiometer for Surface Reflectance Retrieval and Orbital Sensor’s Validation. Remote Sens. 2023, 15, 2444. [Google Scholar] [CrossRef]
- May, W. The role of land-surface interactions for surface climate in the EC-Earth3 earth system model. Earth Syst. Dynam. Discuss, 2023; in review. [Google Scholar]
- Melnik, Y.; Zubkovich, S.; Stepanenko, V. Radar Methods of Earth Exploration; Sovetskoe Radio: Moscow, Russia, 1980. [Google Scholar]
- Volosyuk, V.; Kravchenko, V. Statistical Theory of Radio-Technical Systems of Remote Sensing and Radiolocation; FIZMATLIT: Moscow, Russian, 2008. [Google Scholar]
- Pandey, P.; Kakar, R. An empirical microwave emissivity model for a foam-covered sea. IEEE J. Ocean. Eng. 1982, 7, 135–140. [Google Scholar] [CrossRef]
- Wei, E.; Ge, Y. A microwave emissivity model of sea surface under wave breaking. Chin. Phys. 2005, 14, 1259. [Google Scholar]
- Paloscia, S.; Macelloni, G.; Santi, E. Soil Moisture Estimates From AMSR-E Brightness Temperatures by Using a Dual-Frequency Algorithm. IEEE Trans. Geosci. Remote Sens. 2006, 14, 3135–3144. [Google Scholar] [CrossRef]
- Shi, J.; Jiang, L.; Zhang, L.; Chen, K.S.; Wigneron, J.P.; Chanzy, A.; Jackson, T.J. Physically Based Estimation of Bare-Surface Soil Moisture With the Passive Radiometers. IEEE Trans. Geosci. Remote Sens. 2006, 44, 3145–3153. [Google Scholar] [CrossRef]
- Stepanenko, V.; Shchukin, G.; Bobylev, L.; Matrosov, S. Radio-Thermal Location in Meteorology; Gidrometeoizdat: Leningrad, Russia, 1987. [Google Scholar]
- Piik, V.K. Theory of radiolocation reflections from the Earth’s surface. Zarubezhnaya Radioelektronika 1960, 3, 3–16. [Google Scholar]
- Stofan, E.R.; Evans, D.L.; Schmullius, C.; Holt, B.; Plaut, J.J.; van Zyl, J.; Wall, S.D.; Way, J. Overview of results of Spaceborne Imaging Radar-C, X-Band Synthetic Aperture Radar (SIR-C/X-SAR). IEEE Trans. Geosci. Remote Sens. 1995, 33, 817–828. [Google Scholar] [CrossRef]
- Kulemin, G. Millimeter Wave Radar Targets and Clutter; Artech House: Boston, MA, USA, 2003. [Google Scholar]
- Kulemin, G.; Razskazovskii, V. Scattering of Millimeter Radio Waves by the Earth’s Surface at Small Angles; Naukova Dumka: Kyiv, Ukraine, 1987. [Google Scholar]
- Oh, Y.; Sarabandi, K.; Ulaby, F.T. An empirical model and an inversion technique for radar scattering from bare soil surfaces. IEEE Trans. Geosci. Remote Sens. 1992, 30, 370–381. [Google Scholar] [CrossRef]
- Oh, Y.; Sarabandi, S.; Ulaby, F.T. An inversion algorithm for retrieving soil moisture and surface roughness from polarimetric radar observation. In Proceedings of the 1994 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, 8–12 August 1994. [Google Scholar]
- Wang, J.R.; Hsu, A.; Shi, J.C.; O’Neill, P.E.; Engman, E.T. A comparison of soil moisture retrieval models using SIR-C measurements over the little Washita River watershed. Remote Sens. Environ. 1997, 59, 308–320. [Google Scholar] [CrossRef]
- Dubois, P.C.; van Zyl, J.; Engman, T. Measuring soil moisture with imaging radars. IEEE Trans. Geosci. Remote Sens. 1995, 33, 915–926. [Google Scholar] [CrossRef]
- Mur, R.K. Radar detection of wind parameters over the sea. TIIER 1979, 6, 40–63. [Google Scholar]
- Jiancheng, S.; Wang, J.; Hsu, A.Y.; O’Neill, P.E.; Engman, E.T. Estimation of bare surface soil moisture and surface roughness parameter using L-band SAR image data. IEEE Trans. Geosci. Remote Sens. 1997, 35, 1254–1266. [Google Scholar] [CrossRef]
- Baars, E.P.; Essen, H. Millimeter-wave backscatter measurements on snow-covered terrain. IEEE Trans. Geosci. Remote Sens. 1988, 26, 282–299. [Google Scholar] [CrossRef]
- Wilheit, T.T.; Chang, A.T.C. An algorithm for retrieval of ocean surface and atmospheric parameters from the observations of the scanning multichannel microwave radiometer. Radio Sci. 1980, 15, 525–544. [Google Scholar] [CrossRef]
- Basharinov, A.; Gurvich, A.; Egorov, S. Radio Emission of the Earth as a Planet; Nauka: Moscow, Russia, 1974. [Google Scholar]
- Bogorodskii, V.; Kozlov, A.; Tuchkov, L. Radio-Thermal Radiation of the Earth’s Covers; Gidrometeoizdat: Leningrad, Russia, 1977. [Google Scholar]
- Kutuza, B.; Yakovlev, O.; Danilychev, M. Satellite-Based Earth Monitoring. Microwave Radiometry of Atmosphere and Surface; LENAND: Moscow, Russian, 2016. [Google Scholar]
- Wu, S.T.; Fung, A.K. A noncoherent model for microwave emissions and backscattering from the sea surface. J. Geophys. Res. 1972, 77, 5917–5929. [Google Scholar] [CrossRef]
- Liu, Q.; Weng, F.; English, S.J. An Improved Fast Microwave Water Emissivity Model. IEEE Trans. Geosci. Remote Sens. 2011, 49, 1238–1250. [Google Scholar] [CrossRef]
- Nezhalska, K.; Belousov, K.; Volosyuk, V.; Zhyla, S.; Mazurenko, O. Algorithm for Selecting a Surface Model for Remote Sensing of Earth’s Surfaces. In Proceedings of the 2023 IEEE 13th International Conference on Electronics and Information Technologies (ELIT), Lviv, Ukraine, 26–28 September 2023. [Google Scholar]
Type | Frequency Range (Wavelengths) | Conditions of Use |
---|---|---|
Brightness temperature | ||
Electrodynamic | ||
Flat | – | |
Flat with the atmosphere | – | |
Small-scale | – | ,
|
Large-scale | – | |
Two-scale | – | |
Empirical | ||
Sea surface with foam | 9.3–34 GHz (8.8 mm—3.2 cm) | For a sea surface with foam (excluding atmospheric illumination), including wind speed |
model | 4–8.8 GHz (3.4–7.5 cm) | Vegetation is an equally absorbing and backscattering layer over the soil surface |
model | 6.9–36.5 GHz (8.3 mm–4.3 cm) | Surface without vegetation |
Regression model | 22.2–37.5 GHz (0.8–1.35 cm) | To estimate the moisture content of a cloudless atmosphere |
“Meteor” regression model | 37.5 GHz (0.8 cm) | To estimate the moisture content of the atmosphere and clouds at a sight angle |
“Nimbus 5” model | cm—operating wavelengths, 31.25 GHz, 22.22 GHz | To estimate the moisture content of the atmosphere and clouds when sighting in nadir, |
“Seasat” model | cm—operating wavelengths, frequencies 37.05 GHz, 20.98 GHz, 17.96 GHz, 10.71 GHz, 6.593 GHz | To measure the near-surface wind speed m/s, thermodynamic temperature [K], atmosphere’s moisture content [mg/cm2], and cloud moisture content [mg/cm2] |
Radar Cross-Section (RCS) | ||
Electrodynamic | ||
Flat | – | |
Small-scale | – | ,
|
Large-scale | – | |
Two-scale | – | |
Empirical | ||
Exponential model | Frequency 3...100 GHz Wavelength 0.003–0.1 m | Quasi-smooth surfaces, rough surfaces with and without vegetation, as well as snow and anthropogenic areas , —angle of incidence |
Oh’s model | – | , moisture content |
Surface with vegetation | Frequency 1–18 GHz Wavelength 0.017–0.3 m | Surface with vegetation |
Dubois model | Frequency 1.5–11 GHz Wavelength 0.027–0.2 m | Surfaces without vegetation, sighting angles from 30 to 65 degrees The normalized radar cross−sections ratio is from 0.3 cm to 3 cm Angles of incidence are |
Model with cylindrical reflectors | – | A surface that can be represented as a set of cylindrical reflectors |
Integral equation model | – | Soils without vegetation at high root mean squares of roughness values. |
Model with a near-surface wind | – | deg is the angle with respect to the direction opposite to the wind vector |
Shi’s model-algorithm | – | Surface without vegetation |
Surface model with snow | – | Surface covered with snow |
Medium | Dielectric Constant | Conductivity , S/m |
---|---|---|
Snow | 1.2 | |
Dry soil | 2.5…4 | |
Moist soil | 4…20 | |
Crystalline rocks | 5…10 | |
Water | 60…80 |
Surface | A1 | A2 | A3 |
---|---|---|---|
Concrete | −49 | 32 | 20 |
Arable land | −37 | 18 | 15 |
Snow | −34 | 25 | 15 |
Deciduous forest, summer | −20 | 10 | 6 |
Deciduous forest, winter | −40 | 10 | 6 |
Coniferous forest, summer and winter | −20 | 10 | 6 |
Meadow, grass height over 0.5 m | −21 | 10 | 6 |
Meadow, grass height less than 0.5 m | −28 | 10 | 6 |
Urban and rural buildings | −8.5 | 5 | 3 |
Polarization | a0 | a1 | a2 | a3 | a4 | a5 | a6 | a7 |
---|---|---|---|---|---|---|---|---|
HH | 2.69 | −5.35 | 0.014 | −23.4 | 33.14 | 0.048 | 0.053 | 0.0051 |
VV | 3.49 | −5.35 | 0.014 | −14.8 | 23.69 | 0.066 | 0.048 | 0.0028 |
HV | 3.91 | −5.35 | 0.013 | −25.5 | 14.65 | 0.098 | 0.258 | 0.0021 |
, deg | |||||||
---|---|---|---|---|---|---|---|
VV | 30 | 8.4 × 10−4 | 1.85 | 5.3 × 10−5 | 1.76 | 3.3 × 10−4 | 1.95 |
40 | 1.3 × 10−4 | 2.15 | 3.5 × 10−5 | 2.03 | 6.4 × 10−5 | 2.27 | |
50 | 4.2 × 10−4 | 2.34 | 1.6 × 10−5 | 2.22 | 2.0 × 10−5 | 2.46 | |
HH | 30 | 1.2 × 10−4 | 1.62 | 2.64 × 10−4 | 1.54 | 3.8 × 10−4 | 1.7 |
40 | 7.6 × 10−4 | 2.05 | 3.9 × 10−5 | 1.94 | 2.8 × 10−5 | 2.16 | |
50 | 9.6 × 10−4 | 2.40 | 7.2 × 10−6 | 2.28 | 3.9 × 10−6 | 2.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nezhalska, K.; Volosyuk, V.; Bilousov, K.; Kolesnikov, D.; Cherepnin, G. Relation Models of Surface Parameters and Backscattering (or Radiation) Fields as a Tool for Solving Remote Sensing Problems. Computation 2024, 12, 104. https://doi.org/10.3390/computation12050104
Nezhalska K, Volosyuk V, Bilousov K, Kolesnikov D, Cherepnin G. Relation Models of Surface Parameters and Backscattering (or Radiation) Fields as a Tool for Solving Remote Sensing Problems. Computation. 2024; 12(5):104. https://doi.org/10.3390/computation12050104
Chicago/Turabian StyleNezhalska, Kseniia, Valerii Volosyuk, Kostiantyn Bilousov, Denys Kolesnikov, and Glib Cherepnin. 2024. "Relation Models of Surface Parameters and Backscattering (or Radiation) Fields as a Tool for Solving Remote Sensing Problems" Computation 12, no. 5: 104. https://doi.org/10.3390/computation12050104
APA StyleNezhalska, K., Volosyuk, V., Bilousov, K., Kolesnikov, D., & Cherepnin, G. (2024). Relation Models of Surface Parameters and Backscattering (or Radiation) Fields as a Tool for Solving Remote Sensing Problems. Computation, 12(5), 104. https://doi.org/10.3390/computation12050104