Modeling and Simulating an Epidemic in Two Dimensions with an Application Regarding COVID-19
Abstract
:1. Introduction
2. Derivation of the Unbounded Model
3. Spatial Discretization of the Bounded Model
4. Discretization in Time
5. Numerical Experiment: Spatial Propagation of COVID-19
5.1. The Force of Containment Measures when
5.2. The Force of Containment Measures when
6. Discussion
Funding
Data Availability Statement
Conflicts of Interest
References
- Alanazi, K.M.; Jackiewicz, Z.; Thieme, H.R. Numerical simulations of the spread of rabies in two-dimensional space. Appl. Numer. Math. 2019, 135, 87–98. [Google Scholar] [CrossRef]
- Alanazi, K.M.; Jackiewicz, Z.; Thieme, H.R. Numerical simulations of spread of rabies in a spatially distributed fox population. Math. Comput. Simul. 2019, 159, 161–182. [Google Scholar] [CrossRef]
- Alanazi, K.M.; Jackiewicz, Z.; Thieme, H.R. Spreading speeds of rabies with territorial and diffusing rabid foxes. Discret. Contin. Dyn.-Syst.-Ser. B 2020, 25, 2143. [Google Scholar] [CrossRef]
- Chekroun, A.; Kuniya, T. Global threshold dynamics of an infection age-structured SIR epidemic model with diffusion under the Dirichlet boundary condition. J. Differ. Equ. 2020, 269, 117–148. [Google Scholar] [CrossRef]
- Diekmann, O. Limiting behaviour in an epidemic model. Nonlinear Anal. TMA 1977, 1, 459–470. [Google Scholar] [CrossRef]
- Gourley, S.A.; Liu, R.; Wu, J. Some vector borne diseases with structured host populations: Extinction and spatial spread. SIAM J. Appl. Math. 2007, 67, 408–433. [Google Scholar] [CrossRef]
- Lu, H.; Giannino, F.; Tartakovsky, D.M. Parsimonious models of in-host viral dynamics and immune response. Appl. Math. Lett. 2023, 145, 108781. [Google Scholar] [CrossRef]
- Ou, C.; Wu, J. Spatial spread of rabies revisited: Influence of age-dependent diffusion on nonlinear dynamics. SIAM J. Appl. Math. 2006, 67, 138–163. [Google Scholar] [CrossRef]
- Thieme, H.R. A model for the spatial spread of an epidemic. J. Math. Biol. 1977, 4, 337–351. [Google Scholar] [CrossRef]
- Thieme, H.R. Mathematics in Population Biology; Princeton University Press: Princeton, NJ, USA, 2003. [Google Scholar]
- So, J.W.-H.; Wu, J.; Zou, X. A reaction–diffusion model for a single species with age structure. I Travelling wavefronts on unbounded domains. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 2001, 457, 1841–1853. [Google Scholar] [CrossRef]
- Ducrot, A.; Langlais, M.; Magal, P. Multiple travelling waves for an SI-epidemic model. Netw. Heterog. Media 2013, 8, 171–190. [Google Scholar] [CrossRef]
- Gourley, S.A.; Kuang, Y. A delay reaction-diffusion model of the spread of bacteriophage infection. SIAM J. Appl. Math. 2004, 65, 550–566. [Google Scholar] [CrossRef]
- Liang, D.; Wu, J.; Zhang, F. Modelling population growth with delayed nonlocal reaction in 2-dimensions. Math. Biosci. Eng. 2004, 2, 111–132. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Zou, X. Traveling wave fronts of reaction-diffusion systems with delay. J. Dyn. Differ. Equ. 2001, 13, 651–687. [Google Scholar] [CrossRef]
- Cui, Q.; Hu, Z.; Li, Y.; Han, J.; Teng, Z.; Qian, J. Dynamic variations of the COVID-19 disease at different quarantine strategies in Wuhan and mainland China. J. Infect. Public Health 2020, 13, 849–855. [Google Scholar] [CrossRef] [PubMed]
- Hellewell, J.; Abbott, S.; Gimma, A.; Bosse, N.I.; Jarvis, C.I.; Russell, T.W.; Munday, J.D.; Kucharski, A.J.; Edmunds, W.J.; Funk, S.; et al. Feasibility of controlling COVID-19 outbreaks by isolation of cases and contacts. Lancet Glob. Health 2020, 8, E488–E496. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.; Zhao, S.; Gao, D.; Lou, Y.; Yang, S.; Musa, S.S.; Wang, M.H.; Cai, Y.; Wang, W.; Yang, L.; et al. A conceptual model for the coronavirus disease 2019 (COVID-19) outbreak in Wuhan, China with individual reaction and governmental action. Int. J. Infect. Dis. 2020, 93, 211–216. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Zhang, H.; Yang, Y.; Wan, H.; Wang, Y. Impacts of geographic factors and population density on the COVID-19 spreading under the lockdown policies of China. Sci. Total Environ. 2020, 746, 141347. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, Y.; Chen, Y.; Qin, Q. Unique epidemiological and clinical features of the emerging 2019 novel coronavirus pneumonia (COVID-19) implicate special control measures. J. Med. Virol. 2020, 92, 568–576. [Google Scholar] [CrossRef]
- Anastassopoulou, C.; Russo, L.; Tsakris, L.; Siettos, C. Modelling and forecasting of the COVID-19 outbreak. PLoS ONE 2020, 15, e0230405. [Google Scholar] [CrossRef]
- Arino, J.; Portet, S. A simple model for COVID-19. Infect. Dis. Model. 2020, 5, 309–315. [Google Scholar] [CrossRef] [PubMed]
- Berestycki, H.; Roquejoffre, J.M.; Rossi, L. Propagation of epidemics along lines with fast diffusion. Bull. Math. Biol. 2021, 83, 2. [Google Scholar] [CrossRef]
- Chen, J. Pathogenicity and transmissibility of 2019-nCoV—A quick overview and comparison with other emerging viruses. Microbes Infect. 2020, 22, 69–71. [Google Scholar] [CrossRef]
- Kouidere, A.; Youssoufi, L.E.; Ferjouchia, H.; Balatif, O.; Rachik, M. Optimal control of mathematical modeling of the spread of the COVID-19 pandemic with highlighting the negative impact of quarantine on diabetics people with cost-effectiveness. Chaos Solitons Fractals 2021, 145, 110777. [Google Scholar] [CrossRef] [PubMed]
- Kucharski, A.J.; Russell, T.W.; Diamond, C.; Liu, Y.; Edmunds, J.; Funk, S.; Eggo, R.M.; Centre for Mathematical Modelling of Infectious Diseases COVID-19 Working Group. Early dynamics of transmission and control of COVID-19: A mathematical modelling study. Lancet Infect. Dis. 2020, 20, 553–558. [Google Scholar] [CrossRef] [PubMed]
- Viguerie, A.; Lorenzo, G.; Auricchio, F.; Baroli, D.; Hughes, T.J.; Patton, A.; Reali, A.; Yankeelov, T.E.; Veneziani, A. Simulating the spread of COVID-19 via a spatially-resolved susceptible–exposed–infected–recovered–deceased (SEIRD) model with heterogeneous diffusion. Appl. Math. Lett. 2021, 111, 106617. [Google Scholar] [CrossRef] [PubMed]
- Wei, F.; Zhou, R.; Jin, Z.; Huang, S.; Peng, Z.; Wang, J.; Xu, X.; Zhang, X.; Xu, J.; Bai, Y.; et al. COVID-19 transmission driven by age-group mathematical model in Shijiazhuang City of China. Infect. Dis. Model. 2023, 8, 1050–1062. [Google Scholar] [CrossRef]
- Wu, J.T.; Leung, K.; Leung, G.M. Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: A modelling study. Lancet 2020, 395, 689–697. [Google Scholar] [CrossRef]
- Zhao, S.; Lin, Q.; Ran, J.; Musa, S.S.; Yang, G.; Wang, W.; Lou, Y.; Gao, D.; Yang, L.; He, D.; et al. Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: A data-driven analysis in the early phase of the outbreak. Int. J. Infect. Dis. 2020, 92, 214–217. [Google Scholar] [CrossRef]
- Zhu, C.C.; Zhu, J. Dynamic analysis of a delayed COVID-19 epidemic with home quarantine in temporal-spatial heterogeneous via global exponential attractor method. Chaos Solitons Fractals 2021, 143, 110546. [Google Scholar] [CrossRef]
- Owren, B.; Zennaro, M. Order barriers for continuous explicit Runge-Kutta methods. Math. Comput. 1991, 56, 645–661. [Google Scholar] [CrossRef]
- Owren, B.; Zennaro, M. Derivation of efficient, continuous, explicit Runge-Kutta methods. SIAM J. Sci. Stat. Comput. 1992, 13, 1488–1501. [Google Scholar] [CrossRef]
- Owren, B.; Zennaro, M. Continuous explicit Runge-Kutta methods. In Computational Ordinary Differential Equations; Institute of Mathematics and Its Applications Conference Series—New Series 39; Oxford University Press: New York, NY, USA, 1992; pp. 97–105. [Google Scholar]
- Thieme, H.R.; Zhao, X.-Q. Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-diffusion models. J. Differ. Equ. 2003, 195, 430–470. [Google Scholar] [CrossRef]
- Bellen, A.; Zennaro, M. Numerical Methods for Delay Differential Equations; Oxford Science Publications, Clarendon Press: Oxford, UK, 2003. [Google Scholar]
- Gladwell, I.; Shampine, L.F.; Brankin, R.W. Automatic selection of the initial step size for an ODE solver. J. Comput. Appl. Math. 1987, 18, 175–192. [Google Scholar] [CrossRef]
- Shampine, L.F.; Gordon, M.K. Computer Solution of Ordinary Differential Equations: The Initial Value Problem; W.H. Freeman: San Francisco, CA, USA, 1975. [Google Scholar]
- Read, J.M.; Bridgen, J.R.; Cummings, D.A.; Ho, A.; Jewell, C.P. Novel coronavirus 2019-nCoV (COVID-19): Early estimation of epidemiological parameters and epidemic size estimates. Philos. Trans. R. Soc. B 2021, 376, 20200265. [Google Scholar] [CrossRef]
- Xu, R.; Rahmandad, H.; Gupta, M.; DiGennaro, C.; Ghaffarzadegan, N.; Amini, H.; Jalali, M.S. Weather, air pollution, and SARS-CoV-2 transmission: A global analysis. Lancet Planet. Health 2021, 5, e671–e680. [Google Scholar] [CrossRef]
- Feng, Y.; Li, Q.; Tong, X.; Wang, R.; Zhai, S.; Gao, C.; Lei, Z.; Chen, S.; Zhou, Y.; Wang, J.; et al. Spatiotemporal spread pattern of the COVID-19 cases in China. PLoS ONE 2020, 15, e0244351. [Google Scholar] [CrossRef]
Parameter | Biological Meaning | Units | Values | References |
---|---|---|---|---|
The initial number of susceptible | [people/] | 3 | Assumed | |
Disease transmission coefficient | [/day] | [18] | ||
s | Incubation period fixed value | [day] | 3 | [18] |
The mean length of infectious period | [day] | [39] |
4 | [km/day] = 16.4703 [km/week] | [km/day] = 10 [km/week] |
5 | [km/day] = 18.6669 km/week] | [km/day] = 12.1737 [km/week] |
6 | [km/day] = 19.9997 [km/week] | [km/day] = 14 [km/week] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alanazi, K.M. Modeling and Simulating an Epidemic in Two Dimensions with an Application Regarding COVID-19. Computation 2024, 12, 34. https://doi.org/10.3390/computation12020034
Alanazi KM. Modeling and Simulating an Epidemic in Two Dimensions with an Application Regarding COVID-19. Computation. 2024; 12(2):34. https://doi.org/10.3390/computation12020034
Chicago/Turabian StyleAlanazi, Khalaf M. 2024. "Modeling and Simulating an Epidemic in Two Dimensions with an Application Regarding COVID-19" Computation 12, no. 2: 34. https://doi.org/10.3390/computation12020034
APA StyleAlanazi, K. M. (2024). Modeling and Simulating an Epidemic in Two Dimensions with an Application Regarding COVID-19. Computation, 12(2), 34. https://doi.org/10.3390/computation12020034