Accurate Liquid Level Measurement with Minimal Error: A Chaotic Observer Approach
Abstract
:1. Introduction
2. Literature Review
3. Development of the System
3.1. Computational Fluid Dynamics
3.2. System Identification
- First-principles model
- Data-driven model
4. Design of the Estimator
4.1. Design of the Lorenz Estimator
4.2. Design of the Rossler Estimator
4.3. Prediction Using the ANN Model
- Supervised learning requires selecting appropriate input and output data.
- Input data normalization is performed to ensure the data are within a consistent range.
- The model is trained on the normalized data using hyperparameter searching, which involves adjusting the model parameters to optimize its performance.
- The model’s goodness of fit is assessed through testing.
4.3.1. Selection of the Input and Output Data for the Supervised Learning
4.3.2. Normalization of Input and Output Data
4.3.3. Training of the Normalized Data and Building the Model Using Hyperparameter Searching
4.3.4. Testing the Goodness of Fit of the Model
4.3.5. Comparison of Actual Data and Predicted Data
- A smaller hidden layer means fewer neurons, reducing the ANN architecture’s complexity and hardware utilization.
- This reduces the computational cost.
- A large number of samples increases the time consumed for training the ANN.
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shah, M.S.; Joshi, J.B.; Kalsi, A.S.; Prasad, C.; Shukla, D.S. Analysis of flow through an orifice meter: CFD simulation. Chem. Eng. Sci. 2012, 71, 300–309. [Google Scholar] [CrossRef]
- Xu, H.; Ding, F.; Sheng, J. On some parameter estimation algorithms for the nonlinear exponential autoregressive model. Int. J. Adapt. Control Signal Process. 2019, 33, 999–1015. [Google Scholar] [CrossRef]
- Gershenson, C. Artificial Neural Networks for Beginners. arXiv 2003. [Google Scholar] [CrossRef]
- Kv, S.; Nair, N.; Nayak, S. Analysis of Propagation of Errors Due to Sensor Faults in a Flow Process for Design of Fault Isolation. In Proceedings of the 2018 2nd International Conference on Power, Energy and Environment: Towards Smart Technology (ICEPE), Shillong, India, 1–2 June 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Singh, P.P. A Chaotic System with Large Lyapunov Exponent: Nonlinear Observer Design and Circuit Implementation. In Proceedings of the 2020 3rd International Conference on Energy, Power and Environment: Towards Clean Energy Technologies, Shillong, Meghalaya, India, 5–7 March 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Wiggins, S. (Ed.) Hamiltonian Vector Fields. In Introduction to Applied Nonlinear Dynamical Systems and Chaos, in Texts in Applied Mathematics; Springer: New York, NY, USA, 2003; pp. 197–230. [Google Scholar] [CrossRef]
- Ann, N.Q.; Pebrianti, D.; Abas, M.F.; Bayuaji, L.; Syafrullah, M. Parameter Prediction for Lorenz Attractor by using Deep Neural Network. Indones. J. Electr. Eng. Inform. (IJEEI) 2020, 8, 532–540. [Google Scholar] [CrossRef]
- Li, Y. A Kind of Nonlinear Observer Design. In Proceedings of the 2020 Chinese Automation Congress (CAC), Shanghai, China, 6–8 November 2020; pp. 2014–2016. [Google Scholar] [CrossRef]
- Aksoy, A.; Zhang, F.; Nielsen-Gammon, J.W. Ensemble-Based Simultaneous State and Parameter Estimation in a Two-Dimensional Sea-Breeze Model. Mon. Weather. Rev. 2006, 134, 2951–2970. [Google Scholar] [CrossRef]
- Nathasarma, R.; Roy, B.K. Physics-Informed Long-Short-Term Memory Neural Network for Parameters Estimation of Nonlinear Systems. IEEE Trans. Ind. Appl. 2023, 59, 5376–5384. [Google Scholar] [CrossRef]
- Kvarda, P. Identifying the Deterministic Chaos by Using the Lyapunov Exponents. June 2001. Available online: http://dspace.vutbr.cz/handle/11012/58190 (accessed on 27 November 2023).
- Kaplan, J.L.; Yorke, J.A. Preturbulence: A regime observed in a fluid flow model of Lorenz. Commun. Math. Phys. 1979, 67, 93–108. [Google Scholar] [CrossRef]
- Kutz, J.N. Data-Driven Modeling & Scientific Computation: Methods for Complex Systems & Big Data; OUP Oxford: Oxford, UK, 2013. [Google Scholar]
- Brunton, S.L.; Noack, B.R.; Koumoutsakos, P. Machine Learning for Fluid Mechanics. Annu. Rev. Fluid Mech. 2020, 52, 477–508. [Google Scholar] [CrossRef]
- Erichson, N.B.; Mathelin, L.; Yao, Z.; Brunton, S.L.; Mahoney, M.W.; Kutz, J.N. Shallow neural networks for fluid flow reconstruction with limited sensors. Proc. R. Soc. A Math. Phys. Eng. Sci. 2020, 476, 20200097. [Google Scholar] [CrossRef] [PubMed]
- Mata-Machuca, J.L.; Martínez-Guerra, R.; Aguilar-López, R. Chaotic Systems Synchronization Via High Order Observer Design. J. Appl. Res. Technol. 2011, 9, 57–68. [Google Scholar] [CrossRef]
- Hato, E.; Shihab, D. Lorenz and Rossler Chaotic System for Speech Signal Encryption. Int. J. Comput. Appl. 2015, 128, 25–33. [Google Scholar] [CrossRef]
- Liu, Y.; Davis, P. Dual synchronization of chaos. Phys. Rev. E 2000, 61, R2176–R2179. [Google Scholar] [CrossRef]
- Ning, D.; Lu, J.-A.; Han, X. Dual synchronization based on two different chaotic systems: Lorenz systems and Rössler systems. J. Comput. Appl. Math. 2007, 206, 1046–1050. [Google Scholar] [CrossRef]
- Alsafasfeh, Q.H.; Al-Arni, M.S. A New Chaotic Behavior from Lorenz and Rossler Systems and Its Electronic Circuit Implementation. Circuits Syst. 2011, 2, 101–105. [Google Scholar] [CrossRef]
- Liang, X.; Zhang, J.; Xia, X. Adaptive synchronization for generalized Lorenz systems. IEEE Trans. Autom. Control 2008, 53, 1740–1746. [Google Scholar] [CrossRef]
- Wang, X.; Jiang, F.; Yin, J. Existence and Uniqueness of the Solution of Lorentz-Rössler Systems with Random Perturbations. Abstr. Appl. Anal. 2013, 2013, e480259. [Google Scholar] [CrossRef]
- Ibrahim, K.M.; Jamal, R.K.; Ali, F.H. Chaotic behaviour of the Rossler model and its analysis by using bifurcations of limit cycles and chaotic attractors. J. Phys. Conf. Ser. 2018, 1003, 012099. [Google Scholar] [CrossRef]
- Morgül, Ö.; Solak, E. Observer based synchronization of chaotic systems. Phys. Rev. E 1996, 54, 4803–4811. [Google Scholar] [CrossRef] [PubMed]
- Awodele, O.; Jegede, O. Neural Networks and Its Application in Engineering. In Proceedings of the InSITE 2009: Informing Science + IT Education Conference, Macon, GA, USA, 12–15 June 2009; Volume 9. Available online: https://www.informingscience.org/Publications/3317 (accessed on 27 November 2023).
- Dubois, P.; Gomez, T.; Planckaert, L.; Perret, L. Data-driven predictions of the Lorenz system. Phys. D Nonlinear Phenom. 2020, 408, 132495. [Google Scholar] [CrossRef]
- Morgül, Ö.; Solak, E. On the Synchronization of Chaos Systems by Using State Observers. Int. J. Bifurc. Chaos 1997, 7, 1307–1322. [Google Scholar] [CrossRef]
- Shenoy, V.; Santhosh, K.V. Design Of Estimator For Level Monitoring Using Data Driven Model. In Proceedings of the 2021 2nd International Conference on Computation, Automation and Knowledge Management (ICCAKM), Dubai, United Arab Emirate, 19–21 January 2021; pp. 81–86. [Google Scholar] [CrossRef]
- Sun, Y.-J. A simple observer design of the generalized Lorenz chaotic systems. Phys. Lett. A 2010, 374, 933–937. [Google Scholar] [CrossRef]
- Barrio, R.; Serrano, S. A three-parametric study of the Lorenz model. Phys. D Nonlinear Phenom. 2007, 229, 43–51. [Google Scholar] [CrossRef]
- Barrio, R.; Serrano, S. Bounds for the chaotic region in the Lorenz model. Phys. D Nonlinear Phenom. 2009, 238, 1615–1624. [Google Scholar] [CrossRef]
- Torres-Treviño, L.; Rodriguez, A. Parameter Estimation Based on Evolutionary Computation for P-Class Chaotic Systems. IFAC Proc. Vol. 2012, 45, 170–174. [Google Scholar] [CrossRef]
- He, W.-P.; Wang, L.; Jiang, Y.-D.; Wan, S.-Q. An improved method for nonlinear parameter estimation: A case study of the Rössler model. Theor. Appl. Clim. 2016, 125, 521–528. [Google Scholar] [CrossRef]
- Annan, J.D.; Hargreaves, J.C. Efficient parameter estimation for a highly chaotic system. Tellus A Dyn. Meteorol. Oceanogr. 2004, 56, 520–526. [Google Scholar] [CrossRef]
- Liao, T.-L.; Huang, N.-S. An observer-based approach for chaotic synchronization with applications to secure communications. IEEE Trans. Circuits Syst. I Regul. Pap. 1999, 46, 1144–1150. [Google Scholar] [CrossRef]
- Zhang, L. Artificial Neural Network Architecture Design for EEG Time Series Simulation Using Chaotic System. In Proceedings of the 2018 Joint 7th International Conference on Informatics, Electronics & Vision (ICIEV) and 2018 2nd International Conference on Imaging, Vision & Pattern Recognition (icIVPR), Kitakyushu, Japan, 25–29 June 2018; pp. 388–393. [Google Scholar] [CrossRef]
- Ukpaka, C.P.; Ukpaka, C. Model prediction for constant area, variable pressure drop in orifice plate characteristics in flow system. Chem. Int. 2022, 2, 80–88. [Google Scholar]
- Monjardin, C.E.F.; Uy, F.A.A.; Tan, F.J.; Cruz, F.R.G. Automated Real-time Monitoring System (ARMS) of hydrological parameters for Ambuklao, Binga and San Roque dams cascade in Luzon Island, Philippines. In Proceedings of the 2017 IEEE Conference on Technologies for Sustainability (SusTech), Phoenix, AZ, USA, 12–14 November 2017; pp. 1–7. [Google Scholar] [CrossRef]
- Cruz, F.R.G.; Binag, M.G.; Ga, M.R.G.; Uy, F.A.A. Flood Prediction Using Multi-Layer Artificial Neural Network in Monitoring System with Rain Gauge, Water Level, Soil Moisture Sensors. In Proceedings of the TENCON 2018—2018 IEEE Region 10 Conference, Jeju, Republic of Korea, 28–31 October 2018; pp. 2499–2503. [Google Scholar] [CrossRef]
- Bhar, K.K.; Bakshi, S. Application of artificial neural network for predicting water levels in Hooghly estuary, India. H2Open J. 2020, 3, 401–415. [Google Scholar] [CrossRef]
- Bustami, R. Artificial neural network for precipitation and water level predictions of bedup river. IAENG Int. J. Comput. Sci. 2007, 34, 2. Available online: https://www.academia.edu/24753916/Artificial_neural_network_for_precipitation_and_water_level_predictions_of_bedup_river (accessed on 27 November 2023).
- Chegini, H.G.; Zarepour, G. Utilizing Artificial Neural Network for Load Prediction Caused by Fluid Sloshing in Tanks. Geofluids 2021, 2021, e3537542. [Google Scholar] [CrossRef]
- Liu, C.-H.; Yang, T.-H.; Wijaya, O.T. Development of an Artificial Neural Network Algorithm Embedded in an On-Site Sensor for Water Level Forecasting. Sensors 2022, 22, 8532. [Google Scholar] [CrossRef]
- Nathasarma, R.; Roy, B.K. Parameter estimation of nonlinear systems with stable, chaotic and periodic behaviours at different initial conditions—A new approach. In Proceedings of the 2022 4th International Conference on Energy, Power and Environment (ICEPE), Shillong, India, 29 April–1 May 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Shenoy, V.; Kv, S. Characterization of orifice performance using Computational Fluid Dynamics. In Proceedings of the 2021 IEEE Mysore Sub Section International Conference (MysuruCon), Hassan, India, 24–25 October 2021; pp. 87–91. [Google Scholar] [CrossRef]
- Kojasoy, G.; Landis, F.; Kwame-Mensah, P.; Chang, C. Two-phase pressure drop in multiple thick- and thin-orifice plates. Exp. Therm. Fluid Sci. 1997, 15, 347–358. [Google Scholar] [CrossRef]
- Tukiman, M.M.; Ghazali, M.N.M.; Sadikin, A.; Nasir, N.F.; Nordin, N.; Sapit, A.; Razali, M.A. CFD simulation of flow through an orifice plate. IOP Conf. Ser. Mater. Sci. Eng. 2017, 243, 012036. [Google Scholar] [CrossRef]
- Reader-Harris, M.J. Computation of Flow through Orifice Plates. 1989, Volume 6, pp. 1907–1917. Available online: https://ui.adsabs.harvard.edu/abs/1989nmlt.conf.1907R (accessed on 27 November 2023).
- Peng, C.-C.; Li, Y.-R. Parameters identification of nonlinear Lorenz chaotic system for high-precision model reference synchronization. Nonlinear Dyn. 2022, 108, 1733–1754. [Google Scholar] [CrossRef]
- Lorenz, E.N. Deterministic Nonperiodic Flow. J. Atmos. Sci. 1963, 20, 130–141. [Google Scholar] [CrossRef]
- Barrio, R.; Blesa, F.; Dena, A.; Serrano, S. Qualitative and numerical analysis of the Rössler model: Bifurcations of equilibria. Comput. Math. Appl. 2011, 62, 4140–4150. [Google Scholar] [CrossRef]
- Rössler, O. An equation for continuous chaos. Phys. Lett. A 1976, 57, 397–398. [Google Scholar] [CrossRef]
- Sahoo, A.K.; Udgata, S.K. A Novel ANN-Based Adaptive Ultrasonic Measurement System for Accurate Water Level Monitoring. IEEE Trans. Instrum. Meas. 2020, 69, 3359–3369. [Google Scholar] [CrossRef]
- Chen, L.; Zhu, Y.; Ahn, C.K. Adaptive Neural Network-Based Observer Design for Switched Systems with Quantized Measurements. IEEE Trans. Neural Netw. Learn. Syst. 2023, 34, 5897–5910. [Google Scholar] [CrossRef]
Liquid Type | Density (kg/m3) | Temperature (°C) | Flowrate (Lph) | Inlet Velocity (m/s) | Simulated Level (m) | Real-Time Level (m) | Error Percentage (%) |
---|---|---|---|---|---|---|---|
Water | 997 | 28 | 150 | 0.5139 | 0.1941 | 0.1890 | 2.6984 |
997 | 28 | 200 | 0.6853 | 0.2587 | 0.2494 | 3.7289 | |
992 | 40 | 150 | 0.5139 | 0.1878 | 0.1901 | 1.2099 | |
992 | 40 | 200 | 0.6853 | 0.2523 | 0.2468 | 2.2285 | |
983 | 60 | 150 | 0.5139 | 0.1879 | 0.1783 | 5.3842 | |
983 | 60 | 200 | 0.6853 | 0.2525 | 0.2382 | 6.0033 | |
Sugar solution | 1032 | 28 | 150 | 0.5139 | 0.1875 | 0.1845 | 1.6260 |
1032 | 28 | 200 | 0.6853 | 0.2520 | 0.2476 | 1.7771 | |
1074 | 40 | 150 | 0.5139 | 0.1873 | 0.1819 | 2.9687 | |
1074 | 40 | 200 | 0.6853 | 0.2518 | 0.2386 | 5.532 | |
1150 | 60 | 150 | 0.5139 | 0.1869 | 0.1765 | 5.8923 | |
1150 | 60 | 200 | 0.6853 | 0.2514 | 0.2372 | 5.9866 | |
Acetone | 950 | 28 | 150 | 0.5139 | 0.1880 | 0.1777 | 5.8526 |
950 | 28 | 200 | 0.6853 | 0.2525 | 0.2684 | 5.9240 |
Layer (Type) | No of Neurons | Parameters |
---|---|---|
Input layer | 4 | - |
Dense 1 (Hidden layer 1) | 7 | 35 |
Dense 2 (Hidden layer 2) | 7 | 56 |
Output layer | 1 | 8 |
Parameters | Initial Condition | Steady-State Value in % | MSE |
---|---|---|---|
Lorenz σ = 10 β = 8/3 ρ = 0.5 | 0.02, 0.1, 0.1 | 90.86 | 0.0002 |
0.025, 0.15, 0.15 | 90.86 | 0.000313 | |
Rossler a = 0.2 b = 0.2 c = 5.7 | 0.02, 0.1, 0.1 | 90.875 | 0.00021 |
0.025, 0.15, 0.15 | 90.875 | 0.000313 |
Estimation Methods | Inlet Velocity (m/s) | Temperature (°C) | Density (kg/m3) | Sensor Placement (Inches) | Liquid Level (m) |
---|---|---|---|---|---|
Theoretical calculation (CFD) | 0.6 | 50 | 900 | 20 | 0.2227 |
Lorenz estimator | 0.6 | 50 | 900 | 20 | 0.2181 |
Rossler estimator | 0.6 | 50 | 900 | 20 | 0.2181 |
ANN prediction | 0.6 | 50 | 900 | 20 | 0.2247 |
Physical system | 0.6 | ~50 | 900 | 20 | 0.1997 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shenoy, V.; Shenoy, P.; Venkata, S.K. Accurate Liquid Level Measurement with Minimal Error: A Chaotic Observer Approach. Computation 2024, 12, 29. https://doi.org/10.3390/computation12020029
Shenoy V, Shenoy P, Venkata SK. Accurate Liquid Level Measurement with Minimal Error: A Chaotic Observer Approach. Computation. 2024; 12(2):29. https://doi.org/10.3390/computation12020029
Chicago/Turabian StyleShenoy, Vighnesh, Prathvi Shenoy, and Santhosh Krishnan Venkata. 2024. "Accurate Liquid Level Measurement with Minimal Error: A Chaotic Observer Approach" Computation 12, no. 2: 29. https://doi.org/10.3390/computation12020029
APA StyleShenoy, V., Shenoy, P., & Venkata, S. K. (2024). Accurate Liquid Level Measurement with Minimal Error: A Chaotic Observer Approach. Computation, 12(2), 29. https://doi.org/10.3390/computation12020029