Analytical and Numerical Results for the Diffusion-Reaction Equation When the Reaction Coefficient Depends on Simultaneously the Space and Time Coordinates
Abstract
:1. Introduction
2. Analytical Solution
2.1. Lorentzian Coefficient of the Reaction Term
2.2. Cosine Function as the Coefficient of the Reaction Term
3. Numerical Solution Preliminaries for Materially Homogeneous and Inhomogeneous Systems
3.1. Discretization and Boundary Conditions for a 1D System
3.2. The Used Numerical Methods
- The simplest scheme used here is the so-called unconditionally positive finite difference (UPFD) formula, which is introduced for the linear diffusion–advection–reaction equation by Chen-Charpentier and Kojouharov [30]. Now the advection term is missing; thus, the new values of the cell variables can be obtained from Equation (15) by the substitution.
- The next scheme we consider is the so-called pseudo-implicit (PI) method. Its two stages apply a modified version of formula (15) with different parameters. The first stage takes a half time step with ; then, the second stage corresponds to a full time step with which uses the results of the first stage as follows:
- 3.
- The original version of the odd–even hopscotch method ([47], denoted here by OOEH) uses only integer time steps with in the first and in the second stage.
- 4.
- In the asymmetric-hopscotch (ASH) scheme, the repeating unit consists of two half and one full-size stages. First, a half-sized time step (light green rectangle with the number ‘1′) is taken for the odd nodes with , and then a full-length step for the even nodes (light orange rectangle) using , and finally a halved third stage (dark orange box) closes the calculation with .
- 5.
- The leapfrog-hopscotch (LH) algorithm starts with Stage 0 (not repeated, green box), which uses . The intermediate stages as well as the last stage (light and dark orange boxes) uses .
- 6.
- The Dufort–Frankel (DF) algorithm [48] (p. 313) is an old but non-conventional method. In our case, it employs the following formula:
- 7.
- The FTCS (forward-time central-space) scheme, which is built on the explicit Euler discretization, can be obtained from (13) by the substitution.
- 8.
- The standard implicit scheme, which is built on the implicit Euler discretization, is obtained from (13) by the substitution. This yields an algebraic equation system with N unknowns, which can be solved in many ways. First, we solve it with the preconditioned conjugate gradient (PCG) method [49] which has been implemented by the built-in routine of MATLAB called pcg. The conjugate gradient method is a non-classical iterative method which can be used for solving linear equation systems with symmetric, positive definite coefficient matrix. In general, the conjugate gradient method yields high accuracy numerical solutions in the so-called A-norm. However, the convergence rate strongly depends on the spectral features of the coefficient matrix, thus it can be very slow for stiff problems. Hence, one can apply preconditioning, i.e., transforming the linear equation system into another linear equation system which is equivalent in the sense that it has the same solution, but it has more favorable spectral features. As a consequence, one loses some accuracy but can reach more favorable convergence rates.
- 9.
- Finally, the above-mentioned algebraic system is solved by GMRES (generalized minimal residual) method [50,51]. It is a non-classical iteration method for solving linear systems of equations which are not necessarily symmetric. The essence of the method is to find an approximate solution of linear equation system, which is the most accurate approximation in the Euclidean norm if we consider a Krylov subspace with a given rank. The GMRES method has been implemented in the gmres built-in routine of MATLAB.
4. Verification of the Numerical Methods
4.1. Case Study 1 with Small Value of Parameter a
4.2. Case Study 2 with Large Value of Parameter a
4.3. Case Study 3 with the Cosine Reaction-Term
5. Numerical Simulation of Surface Subjected to Wind
5.1. The Structure and the Materials of the Surface
5.2. Mesh Construction
5.3. Discretization and Boundary Conditions in Inhomogeneous Media
5.4. The Numerical Algorithms Used
- 1.
- The leapfrog-hopscotch (LH) uses the generalized Theta-formula [55], which reads as follows for a full time step size:
- 2.
- Dufort and Frankel (DF)
5.5. The Initial and the Boundary Conditions
- For the upper elements:
- For the lower elements: ,
- where .
- : the air velocity is taken for each 900 s in [m/s].
- : the upper-side air temperature 295 [°K].
- : the lower air temperature for each 900 s in [°K].
5.6. Results for the Surface of the Wall
6. Conclusions and Summary
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jacobs, M.H. Diffusion Processes; Springer: Berlin/Heidelberg, Germany, 1935; ISBN 978-3-642-86414-8. [Google Scholar]
- Lienhard, J.H. A Heat Transfer Textbook, 4th ed.; Phlogiston Press: Cambridge, MA, USA, 2017; ISBN 9780971383524. [Google Scholar]
- Rothe, F. Global Solutions of Reaction-Diffusion Systems; Springer: Berlin/Heidelberg, Germany, 1984; Volume 1072, ISBN 978-3-540-13365-0. [Google Scholar]
- Smoller, J. Shock Waves and Reaction—Diffusion Equations; Springer: New York, NY, USA, 1994; Volume 258, ISBN 978-1-4612-6929-8. [Google Scholar]
- Gilding, B.H.; Kersner, R. Travelling Waves in Nonlinear Diffusion-Convection Reaction; Birkhäuse: Basel, Switzerland, 2004. [Google Scholar] [CrossRef] [Green Version]
- Wilhelmsson, H.; Lazzaro, E. Reaction-Diffusion Problems in the Physics of Hot Plasmas; CRC Press: Boca Raton, FL, USA, 2000; Available online: https://www.taylorfrancis.com/books/mono/10.1201/9781420033588/reaction-diffusion-problems-physics-hot-plasmas-wilhelmsson-lazzaro (accessed on 13 May 2023).
- Li, T.; Xiong, J.; Zhang, T.; Chai, X.; Liu, X. Multi-physics coupled simulation on steady-state and transients of heat pipe cooled reactor system. Ann. Nucl. Energy 2023, 187, 109774. [Google Scholar] [CrossRef]
- Xie, Q.; Wang, Y.; Li, X.; Yang, Z.; Li, J.; Xie, Z.; Wang, X.; Cai, J.; Xu, Q. Two-dimensional transient heat transfer model of moving quenching jet based on machine learning. Int. J. Heat Mass Transf. 2022, 191, 122765. [Google Scholar] [CrossRef]
- Kim, K.-S.; Won, M.-H.; Kim, J.-W.; Back, B.-J. Heat pipe cooling technology for desktop PC CPU. Appl. Therm. Eng. 2003, 23, 1137–1144. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, B.; Zhu, K.; Li, H.; He, W.; Liu, S. Energy saving potential of using heat pipes for CPU cooling. Appl. Therm. Eng. 2018, 143, 630–638. [Google Scholar] [CrossRef]
- Du, H.; Ekkad, S.V.; Han, J.-C.; Lee, C.P. Detailed Film Cooling Measurements over a Gas Turbine Blade Using a Transient Liquid Crystal Image Technique. Int. J. Rotating Mach. 2001, 7, 415–424. [Google Scholar] [CrossRef] [Green Version]
- Mátyás, L.; Barna, I.F. General Self-Similar Solutions of Diffusion Equation and Related Constructions. Rom. J. Phys. 2022, 67, 101. [Google Scholar]
- Abdulrahman, A.; Gamaoun, F.; Kumar, R.V.; Khan, U.; Gill, H.S.; Nagaraja, K.; Eldin, S.M.; Galal, A.M. Study of thermal variation in a longitudinal exponential porous fin wetted with TiO2−SiO2/ hexanol hybrid nanofluid using hybrid residual power series method. Case Stud. Therm. Eng. 2023, 43, 102777. [Google Scholar] [CrossRef]
- Turkyilmazoglu, M. Convergent optimal variational iteration method and applications to heat and fluid flow problems. Int. J. Numer. Methods Heat Fluid Flow 2016, 26, 790–804. [Google Scholar] [CrossRef]
- Ain, Q.T.; Nadeem, M.; Karim, S.; Akgül, A.; Jarad, F. Optimal variational iteration method for parametric boundary value problem. AIMS Math. 2022, 7, 16649–16656. [Google Scholar] [CrossRef]
- Savović, S.; Djordjevich, A. Numerical solution of the diffusion equation describing the flow of radon through concrete SEQ CHAPTER. Appl. Radiat. Isot. 2008, 66, 552–555. [Google Scholar] [CrossRef]
- Jejeniwa, O.A.; Gidey, H.H.; Appadu, A.R. Numerical Modeling of Pollutant Transport: Results and Optimal Parameters. Symmetry 2022, 14, 2616. [Google Scholar] [CrossRef]
- Mbroh, N.A.; Munyakazi, J.B. A robust numerical scheme for singularly perturbed parabolic reaction-diffusion problems via the method of lines. Int. J. Comput. Math. 2021, 99, 1139–1158. [Google Scholar] [CrossRef]
- Ndou, N.; Dlamini, P.; Jacobs, B.A. Enhanced Unconditionally Positive Finite Difference Method for Advection–Diffusion–Reaction Equations. Mathematics 2022, 10, 2639. [Google Scholar] [CrossRef]
- Kumar, V.; Chandan, K.; Nagaraja, K.V.; Reddy, M.V. Heat Conduction with Krylov Subspace Method Using FEniCSx. Energies 2022, 15, 8077. [Google Scholar] [CrossRef]
- Jiang, T.; Zhang, Y.-T. Krylov implicit integration factor WENO methods for semilinear and fully nonlinear advection–diffusion–reaction equations. J. Comput. Phys. 2013, 253, 368–388. [Google Scholar] [CrossRef]
- Heidari, M.; Ghovatmand, M.; Skandari, M.H.N.; Baleanu, D. Numerical Solution of Reaction–Diffusion Equations with Convergence Analysis. J. Nonlinear Math. Phys. 2022, 30, 384–399. [Google Scholar] [CrossRef]
- Kolev, M.K.; Koleva, M.N.; Vulkov, L.G. An Unconditional Positivity-Preserving Difference Scheme for Models of Cancer Migration and Invasion. Mathematics 2022, 10, 131. [Google Scholar] [CrossRef]
- Beuken, L.; Cheffert, O.; Tutueva, A.; Butusov, D.; Legat, V. Numerical Stability and Performance of Semi-Explicit and Semi-Implicit Predictor–Corrector Methods. Mathematics 2022, 10, 2015. [Google Scholar] [CrossRef]
- Fedoseev, P.; Pesterev, D.; Karimov, A.; Butusov, D. New Step Size Control Algorithm for Semi-Implicit Composition ODE Solvers. Algorithms 2022, 15, 275. [Google Scholar] [CrossRef]
- Ji, Y.; Xing, Y. Highly Accurate and Efficient Time Integration Methods with Unconditional Stability and Flexible Numerical Dissipation. Mathematics 2023, 11, 593. [Google Scholar] [CrossRef]
- Settanni, G.; Sgura, I. Devising efficient numerical methods for oscillating patterns in reaction–diffusion systems. J. Comput. Appl. Math. 2016, 292, 674–693. [Google Scholar] [CrossRef]
- Yadav, V.S.; Singh, A.; Maurya, V.; Rajpoot, M.K. New RK type time-integration methods for stiff convection–diffusion–reaction systems. Comput. Fluids 2023, 257, 105865. [Google Scholar] [CrossRef]
- Essongue, S.; Ledoux, Y.; Ballu, A. Speeding up mesoscale thermal simulations of powder bed additive manufacturing thanks to the forward Euler time-integration scheme: A critical assessment. Finite Elements Anal. Des. 2022, 211, 103825. [Google Scholar] [CrossRef]
- Chen-Charpentier, B.M.; Kojouharov, H.V. An unconditionally positivity preserving scheme for advection–diffusion reaction equations. Math. Comput. Model. 2013, 57, 2177–2185. [Google Scholar] [CrossRef]
- Appadu, A.R. Performance of UPFD scheme under some different regimes of advection, diffusion and reaction. Int. J. Numer. Methods Heat Fluid Flow 2017, 27, 1412–1429. [Google Scholar] [CrossRef] [Green Version]
- Savović, S.; Drljača, B.; Djordjevich, A. A comparative study of two different finite difference methods for solving advection–diffusion reaction equation for modeling exponential traveling wave in heat and mass transfer processes. Ric. di Mat. 2022, 71, 245–252. [Google Scholar] [CrossRef]
- Pourghanbar, S.; Manafian, J.; Ranjbar, M.; Aliyeva, A.; Gasimov, Y.S. An Efficient Alternating Direction Explicit Method for Solving a Nonlinear Partial Differential Equation. Math. Probl. Eng. 2020, 2020, 9647416. [Google Scholar] [CrossRef]
- Al-Bayati, A.Y.; Manaa, S.A.; Al-Rozbayani, A.M. Comparison of Finite Difference Solution Methods for Reaction Diffusion System in Two Dimensions. AL-Rafidain J. Comput. Sci. Math. 2011, 8, 21–36. [Google Scholar] [CrossRef] [Green Version]
- Nagy, Á.; Majár, J.; Kovács, E. Consistency and Convergence Properties of 20 Recent and Old Numerical Schemes for the Diffusion Equation. Algorithms 2022, 15, 425. [Google Scholar] [CrossRef]
- Nagy, Á.; Omle, I.; Kareem, H.; Kovács, E.; Barna, I.F.; Bognar, G. Stable, Explicit, Leapfrog-Hopscotch Algorithms for the Diffusion Equation. Computation 2021, 9, 92. [Google Scholar] [CrossRef]
- Saleh, M.; Kovács, E.; Barna, I.F.; Mátyás, L. New Analytical Results and Comparison of 14 Numerical Schemes for the Diffusion Equation with Space-Dependent Diffusion Coefficient. Mathematics 2022, 10, 2813. [Google Scholar] [CrossRef]
- Saleh, M.; Kovács, E.; Barna, I.F. Analytical and Numerical Results for the Transient Diffusion Equation with Diffusion Coefficient Depending on Both Space and Time. Algorithms 2023, 16, 184. [Google Scholar] [CrossRef]
- Olver, F.W.J.; Lozier, D.W.; Boisvert, R.F.; Clark, C.W. NIST Handbook of Mathematical Functions; Cambridge University Press: New York, NY, USA, 2011; Volume 66, ISBN 978-0-521-14063-8. [Google Scholar]
- Slavyanov, S.; Lay, W. Special Functions: Unified Theory Based on Singularities; Oxford University Press Inc.: Oxford, UK, 2000; ISBN 9780198505730. [Google Scholar]
- Maier, R.S. The 192 solutions of the Heun equation. Math. Comput. 2006, 76, 811–843. [Google Scholar] [CrossRef]
- Ronveaux, A. Heun’s Differential Equations; Clarendon Press: Oxford, UK, 1995; ISBN 13978-0521687935. [Google Scholar]
- Strutt, M.J.O. Lamesche—Mathieausche—Und Verwandte Funktionen in Physik und Technik; Chelsea Publishing Company: New York, NY, USA, 1967. [Google Scholar]
- Meixner, J.; Schäfke, F.W. Mathieusche Funktionen und Sphäroidfunktionen; Springer: Berlin/Heidelberg, Germany, 1954. [Google Scholar] [CrossRef]
- Arscott, F.M. Periodic Differential Equations: An Introduction to Mathieu, Lamé, and Allied Functions; Pergamon: London, UK, 2013. [Google Scholar]
- McLachlan, N.W. Theory and Applications of Mathieu Functions; Oxford University Press Inc.: Oxford, UK, 1964. [Google Scholar]
- Gourlay, A.R.; Mcguire, G.R. General Hopscotch Algorithm for the Numerical Solution of Partial Differential Equations. IMA J. Appl. Math. 1971, 7, 216–227. [Google Scholar] [CrossRef]
- Hirsch, C. Numerical Computation of Internal and External Flows: Fundamentals of Numerical Discretization; Wiley: Hoboken, NJ, USA, 1988; Volume 1. [Google Scholar]
- Hestenes, M.R.; Stiefel, E. Methods of conjugate gradients for solving linear systems. J. Res. Natl. Bur. Stand. 1934, 49, 1952. [Google Scholar] [CrossRef]
- Barrett, R.; Berry, M.; Chan, T.F.; Demmel, J.; Donato, J.; Dongarra, J.; Eijkhout, V.; Pozo, R.; Romine, C.; Van Der Vorst, H. Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 1994. [Google Scholar] [CrossRef]
- Saad, Y.; Schultz, M.H. GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems. SIAM J. Sci. Stat. Comput. 1986, 7, 856–869. [Google Scholar] [CrossRef] [Green Version]
- Askar, A.H.; Omle, I.; Kovács, E.; Majár, J. Testing Some Different Implementations of Heat Convection and Radiation in the Leapfrog-Hopscotch Algorithm. Algorithms 2022, 15, 400. [Google Scholar] [CrossRef]
- Holman, J.P. Heat Transfer, 10th ed.; McGraw-Hill Educ.: New York, NY, USA, 2010; ISBN 0073529362. [Google Scholar]
- Jalghaf, H.K.; Omle, I.; Kovács, E. A Comparative Study of Explicit and Stable Time Integration Schemes for Heat Conduction in an Insulated Wall. Buildings 2022, 12, 824. [Google Scholar] [CrossRef]
- Omle, I.; Askar, A.H.; Kovács, E.; Bolló, B. Comparison of the Performance of New and Traditional Numerical Methods for Long-Term Simulations of Heat Transfer in Walls with Thermal Bridges. Energies 2023, 16, 4604. [Google Scholar] [CrossRef]
- Weather Online. Hungary Holiday Weather. 2023. Available online: https://www.worldweatheronline.com/miskolc-weatherhistory/miskolc/hu.aspx (accessed on 1 February 2023).
- Duffie, J.A.; Beckman, W.A. Solar Engineering of Thermal Processes; Wiley: New York, NY, USA, 1980. [Google Scholar]
Brick | 1900 | 840 | 0.73 |
Rigid Polyurethane Foam | 320 | 1400 | 0.023 |
Upper Elements | Lower Elements | |
---|---|---|
0.6 | 0.6–5.55 | |
T (K) | 290 | 275–280 |
Numerical Method | Time Step Size h (Tolerance) | Maximum Error | Running Time (s) |
---|---|---|---|
leapfrog-hopscotch (LH) | 10 | 0.0042 | 1.32 |
Dufort–Frankel (DF) | 10 | 0.0051 | 0.97 |
generalized minimal residual (GMRES) | 1·(10−7) | 0.0058 | 246.965 |
preconditioned conjugate gradient (PCG) | 1·(10−7) | 0.0062 | 1187.404 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Askar, A.H.; Nagy, Á.; Barna, I.F.; Kovács, E. Analytical and Numerical Results for the Diffusion-Reaction Equation When the Reaction Coefficient Depends on Simultaneously the Space and Time Coordinates. Computation 2023, 11, 127. https://doi.org/10.3390/computation11070127
Askar AH, Nagy Á, Barna IF, Kovács E. Analytical and Numerical Results for the Diffusion-Reaction Equation When the Reaction Coefficient Depends on Simultaneously the Space and Time Coordinates. Computation. 2023; 11(7):127. https://doi.org/10.3390/computation11070127
Chicago/Turabian StyleAskar, Ali Habeeb, Ádám Nagy, Imre Ferenc Barna, and Endre Kovács. 2023. "Analytical and Numerical Results for the Diffusion-Reaction Equation When the Reaction Coefficient Depends on Simultaneously the Space and Time Coordinates" Computation 11, no. 7: 127. https://doi.org/10.3390/computation11070127
APA StyleAskar, A. H., Nagy, Á., Barna, I. F., & Kovács, E. (2023). Analytical and Numerical Results for the Diffusion-Reaction Equation When the Reaction Coefficient Depends on Simultaneously the Space and Time Coordinates. Computation, 11(7), 127. https://doi.org/10.3390/computation11070127