
Citation: Metah, C.; Khalifa, A.; Palu,

R. A Parallel Computing Approach to

Gene Expression and Phenotype

Correlation for Identifying Retinitis

Pigmentosa Modifiers in Drosophila.

Computation 2023, 11, 118.

https://doi.org/10.3390/

computation11060118

Academic Editor: Rainer Breitling

Received: 16 May 2023

Revised: 5 June 2023

Accepted: 6 June 2023

Published: 14 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computation

Article

A Parallel Computing Approach to Gene Expression and
Phenotype Correlation for Identifying Retinitis Pigmentosa
Modifiers in Drosophila
Chawin Metah 1, Amal Khalifa 1,* and Rebecca Palu 2

1 Department of Computer Science, Purdue University Fort Wayne, Fort Wayne, IN 46805, USA;
metac01@pfw.edu

2 Department of Biology, Purdue University Fort Wayne, Fort Wayne, IN 46805, USA; palur@pfw.edu
* Correspondence: khalifaa@pfw.edu

Abstract: As a genetic eye disorder, retinitis pigmentosa (RP) has been a focus of researchers to find
a diagnosis through either genome-wide association (GWA) or RNAseq analysis. In fact, GWA
and RNAseq are considered two complementary approaches to gaining a more comprehensive
understanding of the genetics of different diseases. However, RNAseq analysis can provide
information about the specific mechanisms underlying the disease and the potential targets for
therapy. This research proposes a new approach to differential gene expression (DGE) analysis,
which is the heart of the core-analysis phase in any RNAseq study. Based on the Drosophila Genetic
Reference Panel (DGRP), the gene expression dataset is computationally analyzed in light of
eye-size phenotypes. We utilized the foreach and the doParallel R packages to run the code on
a multicore machine to reduce the running time of the original algorithm, which exhibited an
exponential time complexity. Experimental results showed an outstanding performance, reducing
the running time by 95% while using 32 processes. In addition, more candidate modifier genes
for RP were identified by increasing the scope of the analysis and considering more datasets that
represent different phenotype models.

Keywords: retinal apoptosis; ER stress; modifier genes; gene expression; phenotypic variation;
degenerative models; parallel computing; multithreading

1. Introduction

Retinitis pigmentosa (RP) is a genetic eye disorder that causes progressive degeneration
of the cells in the retina, leading to significant visual impairment or blindness in some
cases. RP is caused by mutations in genes that are essential for the normal functioning of
the retina, and there are several different genetic forms of the disorder. There is currently
no cure for RP, but there are treatments that can help manage the symptoms and slow the
progression of the disease [1].

Recent studies on the human genetic database show a significant comparability be-
tween Drosophila Melanogaster, commonly known as the fruit fly, and human genes. Thus,
the Drosophila Genetic Reference Panel (DGRP) was created in 2007, which includes a stan-
dardized set of over 200 inbred lines and more than 20,000 annotated genes. It provides a
powerful resource for geneticists and evolutionary biologists to investigate, in a controlled
setting, the genetic basis of a wide range of traits including behaviors, morphology, and
disease susceptibility [2,3]. For example, by exposing the DGRP strains to environmental
conditions that mimic the effects of RP, such as exposure to light-induced oxidative stress,
researchers can observe differences in the severity and progression of the disease across the
different strains.

Through genome-wide association (GWA) studies, researchers can then identify ge-
netic variants that are significantly associated with disease as well as potential targets for
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therapeutic intervention. In their GWA, Chow et al. [4] identified 100 candidate genes that
were linked to retinal degeneration and may play a role in the progression of RP. However,
this type of analysis cannot fully identify potential modifiers that are indirectly related to
changes in eye size and may be differentially regulated several steps downstream of the
associated gene. In this case, RNAseq analysis can be used in ways that are complementary
to GWA to investigate the genetics of RP [5]. While GWA focuses on identifying genetic
variants associated with the disease, RNAseq analysis can be used to investigate the effects
of these variants on gene expression and pathway dysregulation [6]. This provides insights
into the specific mechanisms underlying the disease and potential targets for therapy.
Additionally, RNAseq analysis can be used to validate the functional relevance of genetic
variants identified by GWA [7].

As explained by Conesa et al. [5], differential gene expression (DGE) analysis is the
heart of the core-analysis phase in any RNAseq study. Various techniques have been
developed to evaluate expression data among multiple samples and identify suspect genes.
Some of the methods rely on specific discrete probability distributions, such as the Poisson
and negative binomial distributions [8]. edgeR is a comprehensive package in R that
takes raw read data and carries out both normalization and differential expression analysis
simultaneously [9]. More packages, including baySeq [10] and EBseq [11], on the other hand,
follow the Bayesian negative binomial paradigm to identify differential gene expression.
Furthermore, methods such as NOISeq [12] and SAMseq [13] are non-parametrically
designed and introduce fewer false premises and estimations based on existing data.
In a comparative study by Soneson and Delorenzi [14], several DGE approaches were
investigated using simulated and real RNA-seq data. The results showed that all methods
performed better for large sample sizes using more than three samples per condition for an
RNA-seq experiment. EBSeq showed the strongest dependency on the sample size while
DESeq offered the best results for smaller sample size datasets.

An alternative approach would be observing extreme phenotypes (such as extremely
large or small eye sizes) and trying to understand how they are linked to changes
in gene expression when they are significantly altered in strains. Although this ap-
proach has been used successfully to identify modifier genes in a variety of diseases and
cancers [15,16], it has not yet been widely applied to Drosophila. Two previous studies
investigated candidate RP genes using eye-size phenotypes and the gene expression level
of DGRP. Amstutz et al. [17] utilized the unsupervised learning algorithm of K-Mean
clustering to group strains based on the profile of their expression levels. The extreme
minimum and maximum eye-size profiles were selected from a total of six clusters. The
two replicates for each selected line were averaged and passed to the differential gene
expression analysis algorithm. The study further validated the RP candidate genes by
comparing the control eye sizes with RNA interference (RNAi) strains.

On the other hand, Nguyen et al. [18] proposed selecting sixteen strains that exhibit
extreme eye size and generating a list of all their possible replicate combinations instead
of using the average expression value between two replicates of a DGRP strain. The
“best combination” is then selected, such that only the strain replicate that offers the best
expression/eye-size correlation among all the genes is selected and considered for further
analysis. However, the main issue is the intensive computations required to find the best
replicate, especially when considering a large number of strains.

The objective of this research is to speed up the execution time of Nguyen’s approach
by exploiting some parallel computing constructs in the R language. Hence, the main
contributions are (1) restructuring the code to run in parallel on a multicore processor,
(2) filtering out the input datasets before the analysis, and (3) using the p-value to assess the
statistical significance of the results. The rest of the paper is organized as follows: Section 2
describes the structure of the input datasets and the steps of the proposed computational
approach. In Section 3, the results of the study are presented and discussed in the light
of several experiments considering different performance criteria. Potential candidate
modifiers are then identified and their relation to eye development and degeneration are
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highlighted in Section 4. Finally, Section 5 summarizes the conclusions as well as some
future research directions.

2. Materials and Methods
2.1. Input Datasets

As the goal of this research was to explore the correlation between the genotype of
RP and the phenotype of degenerative eye-size, we needed two types of datasets. The
first is the DGRP gene expression dataset which was developed by Huang et al. [19],
measuring the expression levels for 185 DGRP strains over 18,140 genes. As shown
in Table 1, this dataset is represented by a matrix with the genes as rows and the
DGRP stains as columns. The gene names have the FBgn/XLOC prefix followed by an
identification number. In fact, the FBgn genes have been recognized and fully annotated
in Flybase, while little is known about the XLOC genes. In addition, the values stored in
the matrix cells are the RNA expression value for each strain. With two replicates for
each strain line, the columns are annotated using the postfix “:1” and “:2” representing
the first and the second replicate, respectively.

Table 1. A sample of the DGRP expression-level dataset.

Gene Expression Level

RAL021:1 RAL021:2 RAL026:1 RAL026:2

FBgn0000014 4.244723137 4.216353088 4.028685457 3.965513774
FBgn0000015 3.234859699 3.199773952 3.266073855 3.514853684
FBgn0000017 8.066864662 7.962031505 8.016965853 8.081375654
FBgn0000018 5.317033088 5.268665083 5.583749674 4.949218486
FBgn0000022 3.000683083 3.000127343 4.033542617 3.364429304
FBgn0000024 6.120670813 6.023183171 6.363472661 6.83930746
FBgn0000028 4.101309578 4.050933404 4.581349626 4.276622648
FBgn0000032 7.460913282 7.68689799 7.782455553 7.635495636
FBgn0000036 3.988090417 3.789139103 3.979189512 3.95396714
FBgn0000037 4.475747359 4.323271618 4.457239171 4.378994365

. . . . . . . . . . . . . . .
XLOC_006439 2.414951288 2.612959863 3.717652528 2.090561202

The eye-size phenotype, on the other hand, is captured by three different datasets:
Rh1G69D, rpr, and p53. Those resulted from studies that observed different apoptosis (pro-
grammed cell death)-induced retinal degeneration models across the DGRP. Chow et al. [4]
studied the Rh1G69D model of degeneration, representing 173 DGRP lines. Overexpression
of p53 or reaper (rpr) were both studied by Palu et al. [20]. The 204 strains from the DGRP
were used for the GMR > p53 study and 202 were used for the GMR-rpr study. The average
two-dimensional eye area was measured for at least 10 female flies that were flash-frozen
prior to imaging. The eye area is defined as the area of the polygon connecting certain
landmark points around the eye. Usually, the eye area is manually measured using tools
such as Adobe Photoshop on frontal images of the head [21]. As shown in Table 2, the
three datasets are saved in a text file that contains two columns: strain IDs and the average
eye size measured in pixels × 103. A strain ID comprises an indicator, “RAL”, followed
by a three-digit identification number. It is also worth noting that some strains in eye-size
datasets don’t exist in the expression-level matrix. Hence, only the intersection between
the two will be analyzed in each case.

Table 2. A sample of the eye-size dataset.

Strain ID Average Eye Size (Pixels × 103)

RAL021 19,976.8
RAL026 21,473.2
RAL038 19,981.5
RAL040 16,992.9
RAL042 21,481.4

. . . . . .
RAL913 19,488.5
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2.2. Correlation Analysis

The correlation coefficient is used in the fields of science and finance to statistically
assess the relationship between two variables, factors, or datasets. Its values can range from
−1 to 1, where −1 indicates a perfect inverse correlation, with values in one series rising as
those in the other decline, and vice versa. A value of 1 shows a perfect direct correlation,
and the value 0 means there is no linear relationship. Although Pearson’s formula is the
most commonly used correlation method, it cannot assess nonlinear associations between
variables or those arising from sampled data not subject to a normal distribution. In these
cases, nonparametric methods such as Spearman’s, the Kendall rank, or a polychronic
correlation coefficient can be used to analyze the relationships.

Pearson’s correlation is a covariance between two samples divided by product of
the standard deviation of those samples. The covariance and standard deviation can be
calculated by using Equations (1) and (2), respectively. Then, we can use those equations
to obtain the correlation coefficient as shown in Equation (3). The variables xi and yi are

the specific values in a sample, while
−
x and

−
y are the mean of each sample. Additionally,

variable n is the number of values contained in a sample.

cov(x, y) =
1

n− 1

n

∑
i=1

[(
xi −

−
x
)
×
(
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−
y
)]

(1)
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x
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−
x
)
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−
y
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√
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(
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−
x
)2
×∑

(
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−
y
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(3)

The vectors x and y represent the average eye sizes being analyzed and the expression
values of a specific gene, respectively. n, on the other hand, corresponds to the number
of strains being selected for this iteration of calculation. Furthermore, since correlation
does not imply causation, a correlation analysis is usually followed by a statistical sig-
nificance test using the p-value, which allows us to assess the level of significance of the
correlation calculation [22].

2.3. Parallel Computation in R

Unlike C/C++ or Fortran, R has not been designed to run in parallel. Although its
basic packages are highly optimized for sequential programs, it still requires a long time
to process huge datasets. Therefore, several packages have been developed, and made
available on CRAN, to facilitate parallel processing of R code. The doParallel package, for
example, uses a data parallelization scheme to spread computational tasks onto multiple
processing cores of a non-clustered architecture with a shared-memory paradigm. doPar-
allel is not a stand-alone package but operates jointly with three other packages: parallel,
foreach, and iterators. The parallel package provides the basis for process creation and
termination on both UNIX-based and Windows operating systems. In a similar fashion
to the parallel package for openMP, the foreach package is used to distribute the data
onto multiple CPU cores and consolidate the results from each process by applying an
appropriate function [23].

As shown in Figure 1, the doParallel functions makeCluster, registerDoParallel, and
stopCluster are used to manage the parallel region creation and termination. The %dopar%
enables the loop to be parallelized through foreach, where each CPU core executes a chunk
of the loop’s iteration space. In fact, foreach and doParallel packages can be executed in
both serial and parallel modes by toggling the .inorder parameter, which should be TRUE
for serials and FALSE for parallels.
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2.4. The Computational Approach

The algorithms mapping phenotypes to associated RP genotypes using eye-size and
DGRP gene expression data were originally proposed by Nguyen et al. [18]. In fact, a huge
barrier towards extending their analysis was the intensive computational requirements of
the algorithms. Hence, the main contribution of this research is to use a parallel computing
approach to improve performance and reduce the overall execution time.

The main steps of the computations are summarized in Algorithm 1. In addition to
the two datasets, it receives bottom and top quantile values as inputs. Those values, in
turn, determine the strains representing the largest and the smallest eye-size groups. In
fact, small eye sizes reflect the phenotype related to the RP genes while healthy eyes are
characterized by large sizes. The quantile values can be adjusted so that the number of
strains selected from each extreme eye-size group are balanced.

Since the input data come from two different sources (eye-size and expression level
datasets), we will focus on those strain lines that are shared between the two datasets in
each case. That is, non-intersecting strain lines will be discarded by the pre-processing step
prior to applying the steps of the main algorithm. In addition, after a careful inspection
of the expression level dataset, we found that some lines are represented with only one
replicate. Those were filtered out as well and were not considered in the subsequent steps.

Once the extreme strains are identified and selected, Algorithm 2 is executed to
generate the matrix of all possible replicate combinations for the selected lines. Since each
strain has two replicates, the algorithm encodes each replicate combination with a binary
number and decides which replicate to choose based on the values of their corresponding
binary digit. Based on the number of selected extreme strains (N), the algorithm encodes
the numbers from 0 to 2N−1. For example, in the case of 6 selected strains, the total number
of possible replicate combinations is 64 (26). The first generated number will be 000000,
which selects the first replicate of every strain. Next, the sequence 100000 selects the second
replicate of the first strain and the first replicate of the other five. The following numbers
will be 010000, 110000, 001000, 101000, . . . . . . etc. The last combination will be represented
by 111111, which means that the second replicate of each strain is selected.

It is clear that Algorithm 3 takes the longest time to run because the number of possible
combinations grows exponentially with the number of selected lines, not to mention the
huge size of the DGRP expression dataset. The sequential time complexity of the method
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can be expressed using (4), where N refers to the number of selected lines representing ex-
treme eye sizes and G represents the number of genes in the gene expression dataset. When
dividing this workload across p processes, the parallel execution time can be expressed by
(5). The impact of using parallel processing will be investigated and discussed more in the
Results section.

Ts = 2N × G (4)

Tp =
Ts

p
(5)

Note that, beside the memory allocated for the two datasets, the space requirements of
this algorithm include the matrix holding the replicate combinations and the vectors storing
the list of candidate genes, as well as their correlation coefficients and their corresponding
p-values. The space complexity of the proposed method can be estimated by (6), where L
and G represent the number of lines and genes in the DGRP expression dataset, respectively.

Space Complexity = L× G + L× 2 + 2N × N + G× 3 (6)

Algorithm 1. Main Algorithm

Input:
Aes—Average eye sizes
Expr—Expression-level matrix
low_quantile—Bottom quantile of eye sizes
high_quantile—Top quantile of eye sizes

C—Correlation threshold value
num_process—Number of parallel processes

Output:
List of candidate genes

Begin
Filterout strains in Expr with only one replicate.
Filterout strains in Expr with no matching values in Aes.
selSizes←− eye sizes in Aes less than low_quantile or greater than high_quantile values
extreme_strains←− strains in Aes corresponding to selSizes
rep_combs←− Algorithm2 (extreme_strains)
best_rep_comb←− Algorithm3 (selSizes, Expr, rep_combs, C, num_ process)
candidate_genes←− Algorithm4 (SelSizes, Expr, rep_combs, best_rep_comb, C)
Print candidate_genes, their correlation coefficients, and p-values.

End

Algorithm 2. Generate replicate combinations

Input:
selStrain—Selected extreme strains.

Output:
replicate_comb—Replicate combinations matrix.

Begin
N←− Length(selStrain)
for i←− 1 to 2N do

binary←− DecimalToBinary(i)
for every binary digit d at position j in binary do

if d is 0 then
replicate_comb[i]←− first replicate of strain j

else
replicate_comb[i]←− second replicate of strain j

return replicate_comb
End
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Algorithm 3. Find the best replicate combination

Input:
selSizes—Average eye sizes of selected strains
Expr—Expression level matrix

replicate_comb—Replicate combinations matrix
C—Correlation threshold value
num_process—Number of parallel processes

Output:
bestCombination—Best replicate combination

Begin
Create a parallel team with num_process processes.
Let scoreVec and combVec be empty vectors.
foreach replicate combination c[i] in replicate_comb do
for every gene j do

Score←− 0
selExprs[j]←− expression levels of j in the selected combination c[i]
temp[j]←− correlation value between selExprs[j] and selSizes
if temp[j] < -C OR temp[j] > C then

Score←− Score + 1
end

end
Append Score to ScoreVec
Append c[i] to combVec

end
Terminate the parallel session.
bestCombination←− Replicate combination in combVec associated with Max(ScoreVec)
return bestCombination

End

Algorithm 4. Find candidate genes

Input:
selSizes—Average eye sizes of selected strains
Expr—Expression level matrix
best_rep_comb—Best replicate combination
C—Correlation threshold value

Output:
sorted_genes—List of candidate genes with their correlation coefficients and p-values

Begin
Let m be the number of genes in Expr
Let Results be a list of length m
foreach gene j do

Results[j]←− correlation coefficient and p-values of selSize and gene expression levels of j
for best_rep_comb in Expr

end
Filterout genes in Results’ with p-values less than 0.05
Filterout genes in Results’ with correlation coefficients not in the range [C, 1] nor [−1, -C]
sorted_genes←− Sort Results’ in descending order based on the absolute values of correlation

s coefficients
return sorted_genes

End

Among all the generated combinations, Algorithm 3 tries to find the best combination
based on their correlation with the average eye-size values. That is, for each replicate
combination, the vector of expression levels of one gene is correlated with the vector of
average eye-sizes for the selected extreme strains. When the absolute value of the calculated
correlation coefficient exceeds the set threshold, it contributes to the total score of that repli-
cate combination. Based on these accumulated scores, the best combination is determined
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as the one achieving the highest score. Obviously, as the number of selected extreme lines
increases, the number of replicate combinations grows exponentially. Therefore, when
implementing Algorithm 3 we utilized the parallel computing constructs in R to cut down
the execution time. More discussion will be given in the results section.

The final step of the analysis is handled by Algorithm 4, which calculates the Pearson’s
correlation coefficients between all genes in the best replicate combination and extreme eye
sizes. The algorithm also computes the p-value in each case, and those correlations with
p-values greater than or equal to 0.05 are filtered out of the list of candidate genes. The
same is done with genes whose absolute correlation coefficient values don’t exceed the set
threshold value. Finally, Algorithm 1 should print out the sorted list of candidate genes
along with their correlation coefficients and p-values.

3. Results
3.1. Experimental Setup
3.1.1. Datasets

The analysis here is primarily based on the DGRP expression level dataset, which
consists of 368 columns representing 185 different Drosophila strain lines and 18,140 rows
of genes. Each strain line has two replicates except for RAL513 and RAL890, which
have one replicate each. Thus, when excluding these lines, the expression dataset has
6,675,520 expression values in total. On the other hand, the eye-size datasets of Rh1G69D,
rpr, and p53 consist of 173, 202, and 204 strains, respectively. As discussed above, we will
focus only on those strains that intersect with the DGRP expression dataset. Table 3 shows
the detailed statistics of the three eye-size datasets. For example, Rh1G69D has 170 filtered
strains with an arithmetic mean of 21,540.20 × 103 pixels.

Table 3. Statistics of filtered eye-size datasets.

Dataset Filtered Strains Mean Median Minimum Maximum
Quartile

1st 3rd

Rh1G69D 170 21,540.20 21,561.65 14,254.60 27,349.11 19,995.88 23,199.63

rpr 171 12,666.09 12,486.20 79,57.20 16,883.50 11,620.60 13,906.10

p53 172 14,244.73 14,166.00 10,542.20 17834.60 13,160.12 15,278.90

3.1.2. Quantile Thresholds

To investigate the effect of changing the number of selected lines representing the
extreme eye sizes in the results, we need to find adequate quantile threshold values for
each case. More specifically, we will investigate groups of 16, 18, 20, and 22 lines while
trying to maintain a balanced number of strains representing extremely small and large
eye sizes within a group. Table 4 lists the threshold values utilized for each group in the
three datasets. Figure 2 depicts the cutoff lines for the 16- and 22-line groups using red and
yellow colors, respectively, where the eye-size data is sorted in an ascending order. In the
case of the 16-line group, for example, the selected strains are those that appear on the left
and the right of the left and the right red cutoff lines, respectively.
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Table 4. Quantile threshold values for different groups selected lines.

Dataset Number of
Selected Lines

Quantile (%)

Bottom Top

Rh1G69D

16 20.90 87.20

18 21.00 87.00

20 21.50 85.30

22 22.10 84.60

rpr

16 21.10 83.80

18 23.80 80.80

20 25.10 80.40

22 25.30 79.90

p53

16 17.80 83.68

18 18.90 83.60

20 19.10 82.20

22 19.20 81.68
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3.1.3. Hardware & Software Specifications

To implement the set of proposed algorithms, the R scripting language version 4.2.1
was used. In addition, several external libraries were utilized to analyze the data and
support parallel computations. For example, cor() and cor.test() functions from the stats
package were used to perform the correlation analysis step. The doParallel (ver. 1.0.17)
package was used to facilitate parallelism on loops through the foreach (ver. 1.5.2) package.
The original version of the code, initially developed by Nguyen et al. [18], used the highly
optimized sapply and lapply sequential functions from the R base package.

The experiments were initially deployed on a laptop, then on the Diamond server
of the department of computer science, Purdue University Fort Wayne. The laptop runs
64-bit Windows 8.1 on an Intel i7-6700HQ (sixth generation) CPU with a base clock speed
of 2.6 GHz and 8 GB of RAM. The Diamond server runs the Oracle Linux operating system
version 8.7 on AMD EPYC 7452 CPU with a base clock speed of approximately 2.3 GHz and
62 GB of RAM. While the laptop has four cores with eight physical threads, the Diamond
server has thirty-two cores and can manage up to sixty-four threads.

3.2. Execution Time Analysis

In this set of experiments, the execution time of each algorithm was tested on the
laptop for sixteen strain lines of the Rh1G69D eye-size dataset. Nguyen’s original code
was compared with the enhanced parallel implementation. Table 5 shows the measured
execution time for each algorithm separately. The results show that there is a clear overhead
when executing Algorithm 2 in parallel, and recommend the used of the sequential sapply
function in the following experiments. Similarly, we recommend running Algorithm 4
for eight processes, since the increase in speed achieved when moving from four to eight
processes was not significant and further increases in the number of processes may cause
overhead. Algorithm 3, on the other hand, showed an outstanding speedup since it was
originally the most time consuming one. In fact, the number of possible replicate combina-
tions increases drastically with increasing the number of selected lines. For example, using
16 lines in this case, 65,536 (216) different correlation calculations are needed for each gene.
With 22 lines, the number of possible combinations reaches 222 or 4,194,304.

Table 5. The execution time of each algorithm (in seconds) on a laptop for 16 strains of the Rh1G69D

eye-size dataset.

Nguyen’s
Ours

Serial 2 Processes 4 Processes 8 Processes

Algorithm 1 3.763 21.210 25.710 23.130 24.810

Algorithm 2 862.640 901.010 322.110 215.600 166.960

Algorithm 3 71.342 76.362 23.960 17.868 17.562

Using the Diamond server, we were able to repeat the same experiment using the
recommended parameters for Algorithm 2 and Algorithm 4 while increasing the number
of processes running Algorithm 3. Figure 3 depicts the average execution time for ten
runs using sixteen lines from the Rh1G69D eye-size dataset. The results clearly show the
outstanding performance of the proposed parallel solution compared to Nguyen’s version,
even when only two threads were used. Furthermore, the results show that the best
performance was achieved with 32 processes, with a roughly 95% decrease in execution
time when compared to the sequential version. Using more than 32 processes showed a
slight overhead that affected the execution time. To further investigate the optimal setting
for Algorithm 3, we repeated the same set of experiments considering more lines in the
extreme eye-size groups. The results shown in Figure 4 confirm that the execution time
when using 32 processes is consistently lower than other settings regardless of the number
of selected lines.
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3.3. Suspected Candidate Genes

Here, we are going to focus only on the top ten candidate modifiers that exhibit the
highest correlation values with the extreme eye sizes for each of the three eye-size datasets.
The complete list of genes will be provided as supplementary material (Tables S1–S12).
The top candidate RP genes for the Rh1G69D dataset using 16, 18, 20, and 22 strain lines are
listed in Table 6. Tables 7 and 8 show the top genes for the rpr and p53 datasets, respectively.
The suspect genes that carry over at least three groups of selected lines are highlighted in
blue. Those are potentially significant and worth further investigation. For example, the
gene FBgn0032847 appeared in all four groups of the Rh1G69D dataset and has the highest
correlation values in both the 20 and 22 groups. The same is true for the genes FBgn0027601
and FBgn0053017 in the rpr dataset and FBgn0004373 in the p53 dataset. Furthermore, the
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gene FBgn0037770 was found to be a common suspect gene between Rh1G69D and p53, and
FBgn0015024 existed in both lists of rpr and p53.

Table 6. The top 10 candidate modifiers for the Rh1G69D eye-size dataset with various selected lines.

No. of Selected
Lines Gene ID Correlation

Coefficient p-Value

16

FBgn0027378 −0.863661390 1.624926332 × 10−5

FBgn0263005 −0.856324086 2.297889577 × 10−5

XLOC_006268 −0.849992594 3.053251949 × 10−5

FBgn0032847 −0.840543849 4.560179069 × 10−5

FBgn0033782 0.840068819 4.649931586 × 10−5

FBgn0036761 −0.834562369 5.802852891 x 10−5

FBgn0037531 −0.828535797 7.329098346 × 10−5

FBgn0086679 −0.826073369 8.042371477 × 10−5

FBgn0031233 −0.814773350 1.210237900 × 10−4

FBgn0038639 −0.810804945 1.388117979 × 10−4

18

FBgn0085376 0.859283205 4.923670750 × 10−6

FBgn0033782 0.854529969 6.322511262 × 10−6

FBgn0037531 −0.850683118 7.692063225 × 10−6

FBgn0003345 0.849498533 8.161927414 × 10−6

FBgn0036299 −0.824116242 2.609375328 × 10−5

FBgn0086679 −0.820352399 3.052250605 × 10−5

FBgn0032847 −0.809207602 4.758311930 × 10−5

FBgn0037016 0.804435051 5.705515305 × 10−5

FBgn0263005 −0.799150447 6.936945025 × 10−5

FBgn0263659 0.798357906 7.139778718 × 10−5

20

FBgn0032847 −0.835162086 4.614128240 × 10−6

FBgn0086679 −0.810201591 1.489680678 × 10−5

XLOC_004892 0.808596485 1.596926917 × 10−5

FBgn0037531 −0.798402859 2.447648614 × 10−5

FBgn0037770 −0.795138465 2.792299682 × 10−5

FBgn0033087 −0.782129177 4.616635661 × 10−5

FBgn0038039 −0.777530252 5.470964221 × 10−5

FBgn0261703 0.777148268 5.547684002 × 10−5

FBgn0263602 −0.776940029 5.589897080 × 10−5

FBgn0023513 −0.77665287 5.648562369 × 10−5

22

FBgn0032847 −0.819701175 3.041416193 × 10−6

FBgn0003345 0.806371734 5.849733373 × 10−6

FBgn0039125 −0.798479606 8.420737122 × 10−6

FBgn0027378 −0.798116202 8.559914937 × 10−6

FBgn0037770 −0.775234661 2.259984672 × 10−5

FBgn0036299 −0.773718232 2.400671440 × 10−5

FBgn0038039 −0.766653185 3.162045710 × 10−5

FBgn0030817 −0.759197474 4.186542502 × 10−5

FBgn0033087 −0.758610329 4.278306102 × 10−5

FBgn0263602 −0.757552951 4.447992560 × 10−5
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Table 7. The top 10 candidate modifiers for the rpr eye-size dataset with various selected lines.

No. of Selected
Lines Gene ID Correlation

Coefficient p-Value

16

FBgn0053017 0.878155178 7.701469269 × 10−6

FBgn0032225 0.864824355 1.535297878 × 10−5

FBgn0033244 −0.863862383 1.609129485 × 10−5

FBgn0015513 −0.863578519 1.631477307 × 10−5

FBgn0027601 −0.863380084 1.647253890 × 10−5

FBgn0004620 0.859876472 1.947654735 × 10−5

XLOC_003703 0.857112086 2.215964129 × 10−5

FBgn0052451 −0.854030715 2.550919501 × 10−5

FBgn0030394 0.853756622 2.582664724 × 10−5

FBgn0015024 −0.853296712 2.636675031 × 10−5

18

FBgn0030394 0.863043231 4.013975720 × 10−6

FBgn0052451 −0.861824973 4.291403231 × 10−6

FBgn0053017 0.857064474 5.539380529 × 10−6

FBgn0015513 −0.854016815 6.492125538 × 10−6

XLOC_001754 0.85284074 6.895646685 × 10−6

FBgn0027601 −0.851538255 7.367464694 × 10−6

FBgn0032225 0.848190573 8.709105665 × 10−6

FBgn0040508 0.846060487 9.667524618 × 10−6

FBgn0051523 −0.839435144 1.324811250 × 10−5

XLOC_003703 0.838478248 1.384887686 × 10−5

20

FBgn0052451 −0.865408608 8.358927794 × 10−7

FBgn0027601 −0.856270053 1.457998848 × 10−6

XLOC_003703 0.846002475 2.608233863 × 10−6

FBgn0037223 0.842028538 3.230636630 × 10−6

FBgn0053017 0.841496599 3.323055691 × 10−6

FBgn0033244 −0.834443888 4.784948638 × 10−6

FBgn0051523 −0.834340071 4.810090828 × 10−6

XLOC_004120 0.832821352 5.191263979 × 10−6

XLOC_006378 0.832584454 5.253030551 × 10−6

FBgn0039491 0.828453174 6.437918905 × 10−6

22

FBgn0027601 −0.848794066 5.948318658 × 10−7

FBgn0053017 0.828428119 1.924641707 × 10−6

FBgn0004620 0.819129408 3.131318980 × 10−6

FBgn0015513 −0.816721873 3.536085022 × 10−6

FBgn0036874 0.815971236 3.671371942 × 10−6

FBgn0039491 0.815006786 3.851872618 × 10−6

FBgn0033244 −0.812433525 4.372265832 × 10−6

FBgn0036017 0.80726159 5.608563439 × 10−6

FBgn0085692 0.806424546 5.835169750 × 10−6

XLOC_003128 0.804285096 6.451350215 × 10−6
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Table 8. The top 10 candidate modifiers for the p53 eye-size dataset with various selected lines.

No. of Selected
Lines Gene ID Correlation

Coefficient p-Value

16

FBgn0263110 0.914150185 7.326821639 × 10−7

FBgn0030089 0.912212484 8.520806952 × 10−7

FBgn0051804 −0.893134917 3.203841392 × 10−6

XLOC_002940 −0.880664278 6.703825055 × 10−6

FBgn0262148 −0.84019034 4.626832053 × 10−5

FBgn0004373 0.824802374 8.432604659 × 10−5

FBgn0029952 −0.824030001 8.677364856 × 10−5

XLOC_006034 −0.816964908 1.120425958 × 10−4

FBgn0034624 −0.813349043 1.271757728 × 10−4

FBgn0026369 0.809052147 1.473328296 × 10−4

18

FBgn0030089 0.90872731 1.812918682 × 10−7

FBgn0051804 −0.884756312 1.083361127 × 10−6

XLOC_002940 −0.857875241 5.307141864 × 10−6

FBgn0004373 0.823245148 2.706658753 × 10−5

FBgn0263598 0.820901298 2.983927843 × 10−5

FBgn0085478 0.813059623 4.094743159 × 10−5

FBgn0005632 0.811169207 4.409799798 × 10−5

XLOC_001981 −0.810258107 4.568867256 × 10−5

FBgn0029952 −0.808005811 4.983200012 × 10−5

FBgn0015024 0.800553196 6.589932229 × 10−5

20

XLOC_002940 −0.838696327 3.848574574 × 10−6

FBgn0004373 0.830822887 5.732735463 × 10−6

FBgn0050039 −0.814340058 1.241477643 × 10−5

FBgn0259146 −0.810730528 1.455735618 × 10−5

FBgn0005649 0.805892929 1.792731166 × 10−5

FBgn0037770 0.799502932 2.340117744 × 10−5

FBgn0027338 0.799283244 2.361258995 × 10−5

FBgn0037327 0.792106903 3.149179899 × 10−5

XLOC_003332 −0.790428741 3.363187698 × 10−5

FBgn0085478 0.789154503 3.533971171 × 10−5

22

XLOC_002940 −0.857556268 3.401980564 × 10−7

FBgn0030089 0.84421251 7.858326004 × 10−7

FBgn0085478 0.802630148 6.966511250 × 10−6

FBgn0029976 0.799946333 7.878992278 × 10−6

FBgn0005632 0.799262002 8.127819248 × 10−6

FBgn0004373 0.789236473 1.265143068 × 10−5

FBgn0029952 −0.788090936 1.328762771 × 10−5

FBgn0263598 0.786198336 1.440028907 × 10−5

FBgn0021760 0.78617631 1.441370482 × 10−5

XLOC_004713 −0.784049252 1.576201243 × 10−5

4. Discussion

We will focus our discussion here on top correlated RP genes that appeared at least
three times in different line groups or across different eye-size datasets. Based on this
criteria, 16 genes have been identified and are listed in Table 9. The table shows the actual
gene names, symbols, and their human orthologs (the human genes that share the same
functionality as the Drosophila genes). Some of these genes have potential connections to
apoptosis/disease, which are briefly described in the last column.
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Table 9. Suspected candidate modifiers of Retinitis pigmentosa shared between different groups
and/or datasets.

Gene ID Shared
Datasets/Lines

Gene
Symbol

Gene
Name Human Ortho. Link to RP

FBgn0032847 Rh1G69D: 16, 18,
20, 22

CG10756 TBP-associated
factor 13 TAF13; SUPT3H Unknown

FBgn0037531 Rh1G69D: 16, 18, 20 CG10445 N/A TTF2; HLTF Unknown

FBgn0086679 Rh1G69D: 16, 18, 20 CG9770 pink HPS5; TECPR2 Eye expression and
primary function.

FBgn0027601 rpr: 16, 18, 20, 22 CG9009 pudgy ACSF2/ACSF3 Fatty acid metabolism influences
mitochondrial function and cell death.

FBgn0053017 rpr: 16, 18, 20, 22 CG33017 N/A GPATCH8 Unknown

FBgn0052451 rpr: 16, 18, 20 CG32451 secretory pathway
calcium atpase ATP2C1/ATP2C2

Calcium influx can be a trigger for
apoptosis. Loss in humans is associated
with various diseases, including some

atrophy/degeneration.

XLOC_003703 rpr: 16, 18, 20 N/A N/A N/A Unknown

FBgn0015513 rpr: 16, 18, 22 CG10379 myoblast city DOCK1/DOCK2/
DOCK5

Associated in (DOCK2) with
immunodeficiency 40 (OMIM 616433).

More distant orthologue (DOCK3)
associated with neurodevelopmental

disorder with autophagy and
degenerative axons.

FBgn0033244 rpr: 16, 20, 22 CG8726 N/A PXK Loss in humans associated with
susceptibility to lupus.

FBgn0004373 p53: 16, 18, 20, 22 CG7004 four-wheel drive PI4KB Connection to deafness and to insulin
signaling in human/rodents.

XLOC_002940 p53: 16, 18, 20, 22 N/A N/A N/A Unknown

FBgn0030089 p53: 16, 18, 22 CG9113
adaptor protein

complex 1, gamma
subunit

AP1G1/AP1G2
Associated with USRISR, a

neurodevelopmental disorder (AP1G1)
(OMIM 619548).

FBgn0029952 p53: 16, 18, 22 CG12689 N/A N/A Unknown

FBgn0085478 p53: 18, 20, 22 CG34449
zinc finger

DHHC-type
containing 8

ZDHHC5/
ZDHHC8

Linked to learning and memory
(neuronal function) in mouse models.

FBgn0037770 Rh1G69D: 20, 22
p53: 20

CG5358 arginine
methyltransferase 4

CARM1;
METTL27/7B/7A;

PRMT9/3/7/6/8/2/1;
NDUFAF5; ALKBH8;
BUD23; ATPSCKMT;

GSTCD; TRMT9B;
ANTKMT

Unknown

FBgn0015024 rpr: 16
p53: 18 CG2028 casein kinase Iα Hsap\CSNK1A1,

Hsap\CSNK1A1L
a biomarker for

Alzheimer’s Disease

This list of candidate modifiers is completely distinct from the results discussed in
both Chow’s [4] and Amstutz’s [17] due to the different approaches implemented for the
DGE analysis. However, when compared with Nguyen’s top ten candidate genes [18], two
intersecting genes were identified: MORF-related gene 15 (MRG15) and p (pink). However,
the relationship of these candidate genes with the degenerative retinal disease cannot be
validated until further in-depth biological lab experiments.

5. Conclusions

In this study, we have improved the algorithm for finding candidate RP genes orig-
inally proposed by Nguyen [18]. The method starts with identifying extreme eye-size
strains and generating an exhaustive list of their possible replicate combinations. The best
replicate combination is then identified as the one maximizing the correlation between
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the eye-size phenotype and the expression profiles of all genes. With 2N possible replicate
combinations considered for each gene in the dataset, the sequential implementation of the
method was found to be time consuming, which limited the number of lines (N) that could
be considered and hence the scope of the analysis.

Therefore, we have implemented a parallel version of the method using the foreach
and the doParallel R packages. This enabled the program to run faster than the original
version and decreased the execution time by up to 95% when using 32 processes. Moreover,
beside the DGRP gene expression dataset, three eye-size datasets, Rh1G69D, rpr, and p53,
were also considered. Several experiments have been conducted on groups of 16, 18, 20,
and 22 extreme lines. In our analysis, we focused on the top ten candidate genes, giving
a particular importance to those genes which emerged over multiple groups of selected
lines and/or datasets. As a result, sixteen candidate genes were identified and need to be
further validated through a follow up biological study to prove their association with the
RP disease.

Future directions for this work could be extending the focus of analysis beyond the top
ten candidate genes. In addition, given access to more powerful computational resources,
the experiments could include groups with more than 22 extreme lines. Another extension
could be applying a standard DGE analysis tool, such as DESeq2, to the expression data
for the best replicate combination. One can also consider rewriting the code using other
languages such as C/C++ and use GPUs for a more efficient parallel implementation.
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16-lines of Rh1G69D, Table S2: The list of all valid genes for 18-lines of Rh1G69D, Table S3: The list of
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Table S5: The list of all valid genes for 16-lines of rpr, Table S6: The list of all valid genes for 18-lines
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