Buckling Analysis of Laminated Stiffened Plates with Material Anisotropy Using the Rayleigh–Ritz Approach
Abstract
:1. Introduction
2. Extension of Rayleigh–Ritz Buckling Solutions for Partially Anisotropic Stiffened Plates
2.1. Rayleigh–Ritz Formulation of a Stiffened Anisotropic Plate Buckling Problem
2.2. Boundary Conditions
3. Buckling Solution of Stiffened and Unstiffened Plates with Varying Degree of Anisotropy Using the Rayleigh–Ritz Approach
3.1. Unstiffened Plates
3.1.1. Uniform Loaded Plates
3.1.2. Linear Varying Loaded Plates
3.2. Stiffened Plates
3.2.1. Stiffened Plates with One Stiffener
3.2.2. Plates Stiffened with Multiple Stiffeners
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Leissa, A.W. Buckling of composite plates. Compos. Struct. 1983, 1, 51–66. [Google Scholar] [CrossRef]
- Timoshenko, S.P.; Geere, J.M. Theory of Elastic Stability, 2nd ed.; McGraw-Hill Book Company: New York, NY, USA, 1961. [Google Scholar]
- Narita, Y.; Leissa, A.W. Buckling studies for simply supported symmetrically laminated rectangular plates. Int. J. Mech. Sci. 1990, 32, 909–924. [Google Scholar] [CrossRef]
- Jones, R.M. Mechanics of Composite Materials; Taylor & Francis: New York, NY, USA, 1999. [Google Scholar]
- Whitney, J.M. Structural Analysis of Laminated Anisotropic Plates; Tecnomic Publishing AG.: Lancaster, PA, USA, 1987. [Google Scholar]
- Iyengar, N.G.R. Structural Stability of Columns and Plates; Ellis Horwood: West Sussex, UK, 1988. [Google Scholar]
- Chamis, C.C. Buckling of Anisotropic Composite Plates. J. Struct Div. (ASCE) 1969, 95, 2119–2139. [Google Scholar] [CrossRef]
- Ashton, J.E. Approximate Solutions for Unsymmetrically Laminated Plates. J. Compos. Mater. 1969, 3, 189–191. [Google Scholar] [CrossRef]
- Lagace, P.A.; Jensen, D.W.; Finch, D.C. Buckling of unsymmetric composite laminates. Compos. Struct. 1986, 5, 101–123. [Google Scholar] [CrossRef]
- Sharma, S.; Iyengar, N.G.R.; Murthy, P.N. The buckling of antisymmetrically laminated angle-ply and cross ply plates. Fibre Sci. Technol. 1980, 13, 29–48. [Google Scholar] [CrossRef]
- Chai, G.B.; Hoon, K.H. Buckling of generally laminated composite plates. Compos. Sci. Technol. 1992, 45, 125–133. [Google Scholar] [CrossRef]
- Chai, G.B. Buckling of generally laminated composite plates with various edge support conditions. Compos. Struct. 1994, 29, 299–310. [Google Scholar] [CrossRef]
- Papazoglou, V.J.; Tsouvalis, N.G.; Kyriakopoulos, G.D. Buckling of unsymmetric laminates under linearly varying biaxial in-plane loads combined with shear. Compos. Struct. 1992, 20, 155–163. [Google Scholar] [CrossRef]
- Mondal, B.; Ganapathi, M.; Kalyani, A. On the elastic stability of simply supported anisotropic sandwich panels. Compos. Struct. 2007, 80, 631–635. [Google Scholar] [CrossRef]
- Mittelstedt, C. Explicit analysis and design equations for buckling loads and minimum stiffener requirements of orthotropic and isotropic plates under compressive load braced by longitudinal stiffeners. Thin Wall. Struct. 2008, 46, 1409–1429. [Google Scholar] [CrossRef]
- Herencia, J.E.; Weaver, P.M.; Friswell, M.I. Initial sizing optimisation of anisotropic composite panels with T-shaped stiffeners. Thin Wall. Struct. 2008, 46, 399–412. [Google Scholar] [CrossRef]
- Khosravi, P.; Sedaghati, R. Local buckling and mode switching in the optimum design of stiffened panels. AIAA J. 2008, 46, 1542–1548. [Google Scholar] [CrossRef]
- Bisagni, C.; Vescovini, R. Analytical formulation for local bucking and post-buckling analysis of stiffened laminated panels. Thin Wall. Struct. 2009, 47, 318–334. [Google Scholar] [CrossRef]
- Stamatelos, D.G.; Labeas, G.N.; Tserpes, K.I. Analytical calculation of local buckling and post-buckling behavior of isotropic and orthotropic stiffened panels. Thin Wall. Struct. 2011, 49, 422–430. [Google Scholar] [CrossRef]
- Fazzolari, F.A.; Carrera, E. Advanced variable kinematics Ritz and Galerkin formulations for accurate buckling and vibration analysis of anisotropic laminated composite plates. Compos. Struct. 2011, 94, 50–67. [Google Scholar] [CrossRef]
- Baucke, A.; Mittelstedt, C. Closed-form analysis of the buckling loads of composite laminates under uniaxial compressive load explicitly accounting for bending–twisting-coupling. Compos. Struct. 2015, 128, 437–454. [Google Scholar] [CrossRef]
- Rasheed, H.; Al-Masri, R.; Alali, B. Closed form stability solution of simply supported anisotropic laminated composite plates under axial compression compared with experiments. Eng. Struct. 2017, 151, 327–336. [Google Scholar] [CrossRef]
- York, C.B.; Muller de Almeida, S.F. Effect of bending-twisting coupling on the compression and shear buckling strength of infinitely long plates. Compos. Struct. 2018, 184, 18–29. [Google Scholar] [CrossRef]
- Vescovini, R.; Dozio, L.; D’Ottavio, M.; Polit, O. On the application of the Ritz method to free vibration and buckling analysis of highly anisotropic plates. Comp. Struct. 2018, 192, 460–474. [Google Scholar] [CrossRef]
- Mantzaroudis, V.; Stamatelos, D. An approximate closed-form buckling solution for the local skin buckling of Stiffened Plates with Omega Stringers: The case of Antisymmetric Cross-Ply and Angle-Ply Laminations. In Structures; Elsevier: Amsterdam, The Netherlands, 2020; Volume 28, pp. 1196–1209. [Google Scholar]
- Stamatelos, D.G.; Labeas, G.N. Towards the design of a multispar composite wing. Computation 2020, 8, 24. [Google Scholar] [CrossRef]
- Southwell, R.V. On the analysis of experimental observations in problems of elastic stability. Proc. R. Soc. 1932, 135, 601–616. [Google Scholar]
- Donnell, L.H. On the Application of Southwell’s Method for the Analysis of Buckling Tests; McGraw Hill: New York, NY, USA, 1938; Vol. Stephen Timoshenko 60th Anniversary Volume. [Google Scholar]
- Lekhnitskii, S.G. Anisotropic Plates; Gordon and Breach: New York, NY, USA; London, UK; Paris, France; Montreaux, Switzerland; Tokyo, Japan; Melbourne, Australia, 1968. [Google Scholar]
- Reddy, J.N. Mechanics of Laminated Composite Plates and Shells Theory and Analysis, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2004; p. 831. [Google Scholar]
- MATLAB, Version 7.0; The MathWorks, Inc.: Natick, MA, USA, 2008.
- ANSYS®. Mechanical Release, Version 14.0; ANSYS Inc.: Canonsburg, PA, USA, 2007.
- Kumar, Y.V.S.; Mukhopadhyay, M. A new finite element for bucking analysis of laminated stiffened plates. Compos. Struct. 1999, 46, 321–331. [Google Scholar] [CrossRef]
- Chen, B.; Zeng, Y.; Wang, H.; Li, E. Approximate Bayesian assisted inverse method for identification of parameters of variable stiffness composite laminates. Compos. Struct. 2021, 267, 113853. [Google Scholar] [CrossRef]
- Hu, H.; Yu, T.; Lich, L.V.; Bui, T.Q. Functionally graded curved Timoshenko microbeams: A numerical study using IGA and modified couple stress theory. Compos. Struct. 2020, 254, 112841. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, J.; Zhang Sh Huang, H. A novel dynamic isogeometric reanalysis method and its application in closed-loop optimization problems. Comput. Methods Appl. Mech. Eng. 2019, 353, 1–23. [Google Scholar] [CrossRef]
Mechanical Coupling | |||||
---|---|---|---|---|---|
Laminate | Extension-Shear | Extension-Bending | Extension-Twisting and Shear-Bending | Shear-Twisting | Bending-Twisting |
[03/903]s | - | - | - | - | - |
[03/903/03/903] | - | Yes | - | - | - |
[02/452/02/452/02] | Yes | - | - | - | Yes |
[02/452/02/-452/02] | - | - | Yes | - | - |
[0/90/90/0/0] | - | Yes | - | - | - |
[06/606] | Yes | Yes | Yes | Yes | Yes |
Buckling Load, Nx in (N/mm) | ||||
---|---|---|---|---|
Lamination | R–R Method | FE Model (ANSYS) | Lagace, [9] R–R Results | Experimental Results, Lagace, [9] |
[03/903]s | 26.475 | 26.367 | 27.150 | 19.650 |
[03/903/03/903] | 17.514 | 15.305 | 20.439 | 14.970 |
[02/452/02/452/02] | 22.789 | 21.675 | 18.389 | 23.440 |
[02/452/02/-452/02] | 20.426 | 20.002 | 17.770 | 21.480 |
[06/606] | 17.788 | 10.647 | 18.00 | 11.00 |
[0/90/90/0/0] | Buckling Load, Nx in (N/mm) | ||
---|---|---|---|
Modes (m, n) | R–R Solution | FE Model (ANSYS) | Papazoglou et al. [13] |
(1, 1) | 67.749 | 59.476 | 65.00 |
(2, 1) | 69.298 | 65.803 | - |
(3, 1) | 113.31 | 108.266 | - |
Unloaded Stiffener | Buckling Load, Nx in (N/mm) | ||
---|---|---|---|
R–R Solution | FE Model (ANSYS) | Kumar and Mukhopadhyay [33] | |
Uniform loaded skin | 119.6 | 116.265 | - |
Linearly varying loaded skin | 172.92 | 171.755 | 260.00 |
Buckling Load, Nx in (N/mm) | ||
---|---|---|
R–R Solution | FE Model (ANSYS) | |
Uniform loaded skin | 118.45 | 112.542 |
Linearly varying loaded skin | 184.05 | 168.747 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stamatelos, D.G.; Labeas, G.N. Buckling Analysis of Laminated Stiffened Plates with Material Anisotropy Using the Rayleigh–Ritz Approach. Computation 2023, 11, 110. https://doi.org/10.3390/computation11060110
Stamatelos DG, Labeas GN. Buckling Analysis of Laminated Stiffened Plates with Material Anisotropy Using the Rayleigh–Ritz Approach. Computation. 2023; 11(6):110. https://doi.org/10.3390/computation11060110
Chicago/Turabian StyleStamatelos, Dimitrios G., and George N. Labeas. 2023. "Buckling Analysis of Laminated Stiffened Plates with Material Anisotropy Using the Rayleigh–Ritz Approach" Computation 11, no. 6: 110. https://doi.org/10.3390/computation11060110
APA StyleStamatelos, D. G., & Labeas, G. N. (2023). Buckling Analysis of Laminated Stiffened Plates with Material Anisotropy Using the Rayleigh–Ritz Approach. Computation, 11(6), 110. https://doi.org/10.3390/computation11060110