The Cost of Understanding—XAI Algorithms towards Sustainable ML in the View of Computational Cost
Abstract
:1. Introduction
2. Related Work
3. Methods
3.1. Models
3.2. Test Systems
3.3. Emission Assessment
4. Results
4.1. Software Packages Evaluating Algorithmic Power Consumption
4.2. Consumed Energy of Models Using Explainability or Feature Dimensionality Reduction for Optimization
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CMD | Command prompt |
CPU | Central processing unit |
CNN | Convolutional neural network |
FLOPS | Floating Point Operations Per Second |
GPU | Graphical processing unit |
GUI | Graphical User Interface |
HW | Hardware |
KDE | Kernel Density Estimate |
MSR | Machine State Register |
ML | Machine learning |
NA | Not available |
OS | Operating System |
PUE | Power Usage Effectiveness |
SHAP | SHapley Additive exPlanations |
XAI | Explainable artificial intelligence |
Appendix A
Evaluation Tool | Method | Motivation | Application | Required HW and OS | Active Community | Maintenance | Usage | Documentation |
---|---|---|---|---|---|---|---|---|
Experiment tracker | Calculating PUE | User-friendly power metering including location-based emissions estimations | Python library | Linux/ MacOS with Intel/ Nvidia | Inactive | Published: 1 November 2019 Last Updated: 4 June 2021 | 213 stars, 9 watching, 22 forks | Available in [32] |
PyPapi | Counts FLOPs | Providing Python binding for PAPI | Python library | Linux | NA | Published: 4 July 2017 Last Updated: 20 March 2021 | 29 stars, 3 watching, 8 forks | Available in [35] |
Timeit | Measures execution time | Simple way to time bits of code | Python built in (timeit) | NA | NA | 1st commit: 2003 Last: 22 September 2020 | Unknown | Available in [69] |
Intel Po-wer Gadget | Reading from MSRs | Estimating power consumption from a software level without any HW instrumentation | GUI or CMD | Windows and MacOS with Intel | Yes | Published: 1 July 2014 Last Updated: 5 February 2019 | Multiple blog posts on how to install | Available in [31] |
Powerstat | Measuring battery power and RAPL interface | NA | CMD | Linux with Intel | No | 1st Commit: 15 November 2011 Last Update: 24 March 2023 | 59 stars, 7 watching, 13 forks | Available in [36] |
PowerTOP | Diagnoses issues with power consumption or power management | NA | CMD | Linux | Yes | 1st Commit: 31 July 2010 Last Update: 10 March 2023 | 793 stars, 47 watching, 116 forks | Available in [70] |
Perf | Offers a wrapper to Intels RAPL | Began as a tool for using the performance counters subsystem in Linux | CMD | Intel Chip | Linux only | 1st Update: 5 January 2012 Last Update: 10 March 2023 | Integrated in systems like red hat | Available in [37] |
Likwid | Uses the RAPL interface | Building performance oriented tools that need no additional libraries, kernel patching | CMD | Intel, AMD, ARMv8, POWER9 on Linux, and/or Nvidia GPU | Possibility for a chat with developers via Matrix. Mailing List | 1st commit: 20 May 2014 Last: 30 March 2023 | 1.4k stars, 67 watching, 199 forks, | Available in [38] |
Nvidia-smi | Measuring the power consumption of GPU-intensive applications | Aiding management and monitoring of NVIDIA GPUs | CMD | Nvidia GPU | Official Nvidia Forums | NA (NVML which this is based on was last updated 24 January 2023) | na | Available in [71] |
Code-Carbon | Tracking power consumption and location-dependent carbon intensity | Tracking emissions to estimate the carbon footprint of AI models. | Python library | Any system | Issue tracking via Github | 1st commit: 12 May 2020 Last: 28 March 2023 | 644 stars, 15 watching, 100 forks | Available in [33] |
pyJoules | Measuring energy footprints of systems computing Python code | NA | Python library | Intel CPU, integrated GPU and/or Nvidia GPU | Issue tracking via Github | 1st commit: 19 November 2019 Last: 07 October 2022 | 35 stars, 5 watching, 6 forks | Available in [34] |
Model | Normal/XAI | RFE |
---|---|---|
Cancer classification [64] | Score 78.41% | Score 79.27% * |
MSE 0.257 | MSE 0.249 * | |
Heating 99.77% | 99.77% ** | |
Energy regression [65] | MSE: 0.244 | MSE: 0.244 ** |
Cooling 97.75% | 97.75% ** | |
MSE 2.074 | MSE 2.074 ** | |
Image detection [72] | Score | Score |
59.3% | 59.3% ** |
References
- Weiland, S.; Hickmann, T.; Lederer, M.; Marquardt, J.; Schwindenhammer, S. The 2030 agenda for sustainable development: Transformative change through the sustainable development goals? Politics Gov. 2021, 9, 90–95. [Google Scholar] [CrossRef]
- Sachs, J.D.; Schmidt-Traub, G.; Mazzucato, M.; Messner, D.; Nakicenovic, N.; Rockström, J. Six transformations to achieve the sustainable development goals. Nat. Sustain. 2019, 2, 805–814. [Google Scholar] [CrossRef]
- Gupta, U.; Kim, Y.G.; Lee, S.; Tse, J.; Lee, H.H.S.; Wei, G.Y.; Brooks, D.; Wu, C.J. Chasing carbon: The elusive environmental footprint of computing. IEEE Micro 2022, 42, 37–47. [Google Scholar] [CrossRef]
- Denning, P.J.; Lewis, T.G. Exponential laws of computing growth. Commun. ACM 2016, 60, 54–65. [Google Scholar] [CrossRef]
- Cordella, M.; Alfieri, F.; Sanfelix, J. Reducing the carbon footprint of ICT products through material efficiency strategies: A life cycle analysis of smartphones. J. Ind. Ecol. 2021, 25, 448–464. [Google Scholar] [CrossRef]
- Lavi, H. Measuring Greenhouse Gas Emissions in Data Centres: The Environmental Impact of Cloud Computing. 2022. Available online: https://www.climatiq.io/blog/measure-greenhouse-gas-emissions-carbon-data-centres-cloud-computing (accessed on 2 April 2023).
- Batmunkh, A. Carbon footprint of the most popular social media platforms. Sustainability 2022, 14, 2195. [Google Scholar] [CrossRef]
- Wu, C.J.; Raghavendra, R.; Gupta, U.; Acun, B.; Ardalani, N.; Maeng, K.; Chang, G.; Aga, F.; Huang, J.; Bai, C.; et al. Sustainable ai: Environmental implications, challenges and opportunities. Proc. Mach. Learn. Syst. 2022, 4, 795–813. [Google Scholar]
- Holzinger, A.; Saranti, A.; Angerschmid, A.; Retzlaff, C.O.; Gronauer, A.; Pejakovic, V.; Medel-Jimenez, F.; Krexner, T.; Gollob, C.; Stampfer, K. Digital transformation in smart farm and forest operations needs human-centered AI: Challenges and future directions. Sensors 2022, 22, 3043. [Google Scholar] [CrossRef]
- Hrustek, L. Sustainability driven by agriculture through digital transformation. Sustainability 2020, 12, 8596. [Google Scholar] [CrossRef]
- Kraus, S.; Schiavone, F.; Pluzhnikova, A.; Invernizzi, A.C. Digital transformation in healthcare: Analyzing the current state-of-research. J. Bus. Res. 2021, 123, 557–567. [Google Scholar] [CrossRef]
- Shankar, S.; Reuther, A. Trends in Energy Estimates for Computing in AI/Machine Learning Accelerators, Supercomputers, and Compute-Intensive Applications. In Proceedings of the 2022 IEEE High Performance Extreme Computing Conference (HPEC), Waltham, MA, USA, 19–23 September 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–8. [Google Scholar]
- Aceto, G.; Bovenzi, G.; Ciuonzo, D.; Montieri, A.; Persico, V.; Pescapé, A. Characterization and prediction of mobile-app traffic using Markov modeling. IEEE Trans. Netw. Serv. Manag. 2021, 18, 907–925. [Google Scholar] [CrossRef]
- Nascita, A.; Montieri, A.; Aceto, G.; Ciuonzo, D.; Persico, V.; Pescapé, A. XAI meets mobile traffic classification: Understanding and improving multimodal deep learning architectures. IEEE Trans. Netw. Serv. Manag. 2021, 18, 4225–4246. [Google Scholar] [CrossRef]
- Holzinger, A.; Weippl, E.; Tjoa, A.M.; Kieseberg, P. Digital Transformation for Sustainable Development Goals (SDGs)—A Security, Safety and Privacy Perspective on AI. In Springer Lecture Notes in Computer Science, LNCS 12844; Springer: Berlin/Heidelberg, Germany, 2021; pp. 1–20. [Google Scholar] [CrossRef]
- Wang, J.; Dong, X.; Dong, K. How digital industries affect China’s carbon emissions? Analysis of the direct and indirect structural effects. Technol. Soc. 2022, 68, 101911. [Google Scholar] [CrossRef]
- Tamburri, D.A. Sustainable mlops: Trends and challenges. In Proceedings of the 2020 22nd International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), Timisoara, Romania, 1–4 September 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 17–23. [Google Scholar]
- Kataoka, H.; Duolikun, D.; Enokido, T.; Takizawa, M. Multi-level computation and power consumption models. In Proceedings of the 2015 18th International Conference on Network-Based Information Systems, Taipei, Taiwan, 2–4 September 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 40–47. [Google Scholar]
- Donti, P.L.; Kolter, J.Z. Machine learning for sustainable energy systems. Annu. Rev. Environ. Resour. 2021, 46, 719–747. [Google Scholar] [CrossRef]
- Pham, A.D.; Ngo, N.T.; Truong, T.T.H.; Huynh, N.T.; Truong, N.S. Predicting energy consumption in multiple buildings using machine learning for improving energy efficiency and sustainability. J. Clean. Prod. 2020, 260, 121082. [Google Scholar] [CrossRef]
- Mosavi, A.; Salimi, M.; Faizollahzadeh Ardabili, S.; Rabczuk, T.; Shamshirband, S.; Varkonyi-Koczy, A.R. State of the art of machine learning models in energy systems, a systematic review. Energies 2019, 12, 1301. [Google Scholar] [CrossRef]
- Van Wynsberghe, A. Sustainable AI: AI for sustainability and the sustainability of AI. AI Ethics 2021, 1, 213–218. [Google Scholar] [CrossRef]
- Calero, C.; Piattini, M. Puzzling out software sustainability. Sustain. Comput. Inform. Syst. 2017, 16, 117–124. [Google Scholar] [CrossRef]
- Kern, E.; Hilty, L.M.; Guldner, A.; Maksimov, Y.V.; Filler, A.; Gröger, J.; Naumann, S. Sustainable software products—Towards assessment criteria for resource and energy efficiency. Future Gener. Comput. Syst. 2018, 86, 199–210. [Google Scholar] [CrossRef]
- Herzog, B.; Hönig, T.; Schröder-Preikschat, W.; Plauth, M.; Köhler, S.; Polze, A. Bridging the gap: Energy-efficient execution of software workloads on heterogeneous hardware components. In Proceedings of the Tenth ACM International Conference on Future Energy Systems, Phoenix, AZ, USA, 25–28 June 2019; pp. 428–430. [Google Scholar]
- Demaine, E.D.; Lynch, J.; Mirano, G.J.; Tyagi, N. Energy-efficient algorithms. In Proceedings of the 2016 ACM Conference on Innovations in Theoretical Computer Science, Cambridge, MA, USA, 14–16 January 2016; pp. 321–332. [Google Scholar]
- Budennyy, S.; Lazarev, V.; Zakharenko, N.; Korovin, A.; Plosskaya, O.; Dimitrov, D.; Akhripkin, V.; Pavlov, I.; Oseledets, I.; Barsola, I.; et al. Eco2ai: Carbon emissions tracking of machine learning models as the first step towards sustainable ai. In Doklady Mathematics; Springer: Berlin/Heidelberg, Germany, 2022; Volume 106, pp. S118–S128. [Google Scholar]
- García-Martín, E.; Rodrigues, C.F.; Riley, G.; Grahn, H. Estimation of energy consumption in machine learning. J. Parallel Distrib. Comput. 2019, 134, 75–88. [Google Scholar] [CrossRef]
- Moises, A.C.; Malucelli, A.; Reinehr, S. Practices of energy consumption for sustainable software engineering. In Proceedings of the 2018 Ninth International Green and Sustainable Computing Conference (IGSC), Pittsburgh, PA, USA, 22–24 October 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–6. [Google Scholar]
- Anthony, L.F.W.; Kanding, B.; Selvan, R. Carbontracker: Tracking and Predicting the Carbon Footprint of Training Deep Learning Models. arXiv 2020, arXiv:2007.03051. [Google Scholar]
- Intel® Power Gadget. Available online: https://www.intel.com/content/www/us/en/developer/articles/tool/power-gadget.html (accessed on 2 April 2023).
- Experiment-Impact-Tracker 1.1.0 Documentation. Available online: https://breakend.github.io/experiment-impact-tracker/ (accessed on 2 April 2023).
- CodeCarbon. Available online: https://mlco2.github.io/codecarbon/ (accessed on 2 April 2023).
- Welcome to PyJoules’s Documentation! Available online: https://pyjoules.readthedocs.io/en/latest/ (accessed on 2 April 2023).
- Welcome to PyPAPI’s Documentation! Available online: https://flozz.github.io/pypapi/ (accessed on 2 April 2023).
- Powerstat—A Tool to Measure Power Consumption. Available online: https://manpages.ubuntu.com/manpages/xenial/man8/powerstat.8.html (accessed on 2 April 2023).
- perf: Linux Profiling with Performance Counters. Available online: https://perf.wiki.kernel.org/index.php/Main_Page (accessed on 2 April 2023).
- RRZE-HPC/Likwid. Available online: https://github.com/RRZE-HPC/likwid (accessed on 2 April 2023).
- Khan, K.N.; Hirki, M.; Niemi, T.; Nurminen, J.K.; Ou, Z. RAPL in Action: Experiences in Using RAPL for Power measurements. ACM Trans. Model. Perform. Eval. Comput. Syst. (TOMPECS) 2018, 3, 1–26. [Google Scholar] [CrossRef]
- Ligozat, A.L.; Lefevre, J.; Bugeau, A.; Combaz, J. Unraveling the hidden environmental impacts of AI solutions for environment life cycle assessment of AI solutions. Sustainability 2022, 14, 5172. [Google Scholar] [CrossRef]
- Burkart, N.; Huber, M.F. A survey on the explainability of supervised machine learning. J. Artif. Intell. Res. 2021, 70, 245–317. [Google Scholar] [CrossRef]
- Xu, F.; Uszkoreit, H.; Du, Y.; Fan, W.; Zhao, D.; Zhu, J. Explainable AI: A brief survey on history, research areas, approaches and challenges. In Proceedings of the CCF International Conference on Natural Language Processing and Chinese Computing, Dunhuang, China, 9–14 October 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 563–574. [Google Scholar]
- Holzinger, A.; Goebel, R.; Fong, R.; Moon, T.; Müller, K.R.; Samek, W. xxAI-Beyond Explainable Artificial Intelligence. In Proceedings of the International Workshop on Extending Explainable AI Beyond Deep Models and Classifiers, Vienna, Austria, 18 July 2020; Springer: Cham, Switzerland, 2022; pp. 3–10. [Google Scholar]
- Minh, D.; Wang, H.X.; Li, Y.F.; Nguyen, T.N. Explainable artificial intelligence: A comprehensive review. Artif. Intell. Rev. 2022, 55, 3503–3568. [Google Scholar] [CrossRef]
- Gashi, M.; Vuković, M.; Jekic, N.; Thalmann, S.; Holzinger, A.; Jean-Quartier, C.; Jeanquartier, F. State-of-the-Art Explainability Methods with Focus on Visual Analytics Showcased by Glioma Classification. BioMedInformatics 2022, 2, 139–158. [Google Scholar] [CrossRef]
- Holzinger, A.; Saranti, A.; Molnar, C.; Biececk, P.; Samek, W. Explainable AI Methods—A Brief Overview. In XXAI—Lecture Notes in Artificial Intelligence LNAI 13200; Springer: Berlin/Heidelberg, Germany, 2022; pp. 13–38. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Lee, S.I. A unified approach to interpreting model predictions. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 4768–4777. [Google Scholar]
- Janzing, D.; Minorics, L.; Blöbaum, P. Feature relevance quantification in explainable AI: A causal problem. In Proceedings of the International Conference on Artificial Intelligence and Statistics, Palermo, Italy, 26–28 August 2020; Volume 108. [Google Scholar]
- Kumar, I.; Scheidegger, C.; Venkatasubramanian, S.; Friedler, S. Shapley Residuals: Quantifying the limits of the Shapley value for explanations. Adv. Neural Inf. Process. Syst. 2021, 34, 26598–26608. [Google Scholar]
- Nielsen, I.E.; Ramachandran, R.P.; Bouaynaya, N.; Fathallah-Shaykh, H.M.; Rasool, G. EvalAttAI: A Holistic Approach to Evaluating Attribution Maps in Robust and Non-Robust Models. arXiv 2023, arXiv:2303.08866. [Google Scholar]
- Wang, J.; Wiens, J.; Lundberg, S. Shapley flow: A graph-based approach to interpreting model predictions. In Proceedings of the International Conference on Artificial Intelligence and Statistics, San Diego, CA, USA, 13–15 April 2021; PMLR: 2021. pp. 721–729. [Google Scholar]
- Yeom, S.K.; Seegerer, P.; Lapuschkin, S.; Binder, A.; Wiedemann, S.; Müller, K.R.; Samek, W. Pruning by explaining: A novel criterion for deep neural network pruning. Pattern Recognit. 2021, 115, 107899. [Google Scholar] [CrossRef]
- Jia, W.; Sun, M.; Lian, J.; Hou, S. Feature dimensionality reduction: A review. Complex Intell. Syst. 2022, 8, 2663–2693. [Google Scholar] [CrossRef]
- Giradi, D.; Holzinger, A. Dimensionality reduction for exploratory data analysis in daily medical research. In Advanced Data Analytics in Health; Springer: Berlin/Heidelberg, Germany, 2018; pp. 3–20. [Google Scholar]
- Pilnenskiy, N.; Smetannikov, I. Feature selection algorithms as one of the python data analytical tools. Future Internet 2020, 12, 54. [Google Scholar] [CrossRef]
- Velliangiri, S.; Alagumuthukrishnan, S.; Joseph, S.I.T. A review of dimensionality reduction techniques for efficient computation. Procedia Comput. Sci. 2019, 165, 104–111. [Google Scholar] [CrossRef]
- Kuwil, F.H. A new feature extraction approach of medical image based on data distribution skew. Neurosci. Inform. 2022, 2, 100097. [Google Scholar] [CrossRef]
- Nikas, A.; Gambhir, A.; Trutnevyte, E.; Koasidis, K.; Lund, H.; Thellufsen, J.Z.; Mayer, D.; Zachmann, G.; Miguel, L.J.; Ferreras-Alonso, N.; et al. Perspective of comprehensive and comprehensible multi-model energy and climate science in Europe. Energy 2021, 215, 119153. [Google Scholar] [CrossRef]
- Ahmad, T.; Zhang, D.; Huang, C.; Zhang, H.; Dai, N.; Song, Y.; Chen, H. Artificial intelligence in sustainable energy industry: Status Quo, challenges and opportunities. J. Clean. Prod. 2021, 289, 125834. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Kramer, O. Scikit-learn. In Machine Learning for Evolution Strategies; Springer: Cham, Switzerland, 2016; pp. 45–53. [Google Scholar]
- Gao, J.; Aksoy, B.A.; Dogrusoz, U.; Dresdner, G.; Gross, B.; Sumer, S.O.; Sun, Y.; Jacobsen, A.; Sinha, R.; Larsson, E.; et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 2013, 6, pl1. [Google Scholar] [CrossRef]
- Cerami, E.; Gao, J.; Dogrusoz, U.; Gross, B.E.; Sumer, S.O.; Aksoy, B.A.; Jacobsen, A.; Byrne, C.J.; Heuer, M.L.; Larsson, E.; et al. The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012, 2, 401–404. [Google Scholar] [CrossRef]
- Jean-Quartier, C.; Jeanquartier, F.; Ridvan, A.; Kargl, M.; Mirza, T.; Stangl, T.; Markaĉ, R.; Jurada, M.; Holzinger, A. Mutation-based clustering and classification analysis reveals distinctive age groups and age-related biomarkers for glioma. BMC Med. Inform. Decis. Mak. 2021, 21, 77. [Google Scholar] [CrossRef]
- Tsanas, A.; Xifara, A. Accurate quantitative estimation of energy performance of residential buildings using statistical machine learning tools. Energy Build. 2012, 49, 560–567. [Google Scholar] [CrossRef]
- Jocher, G.; Chaurasia, A.; Stoken, A.; Borovec, J.; Kwon, Y.; Michael, K.; Fang, J. ultralytics/yolov5: V6.2—YOLOv5 Classification Models, Apple M1, Reproducibility, ClearML and Deci.ai Integrations; Zenodo: Honolulu, HI, USA, 2022. [Google Scholar]
- Programming with TensorFlow: Solution for Edge Computing Applications. 2021. Available online: https://lib.ugent.be/en/catalog/ebk01:4100000011728509 (accessed on 2 April 2023).
- Raschka, S.; Patterson, J.; Nolet, C. Machine learning in python: Main developments and technology trends in data science, machine learning, and artificial intelligence. Information 2020, 11, 193. [Google Scholar] [CrossRef]
- Timeit—Measure Execution Time of Small Code Snippets. Available online: https://docs.python.org/3/library/timeit.html (accessed on 2 April 2023).
- Github: Fenrus75/Powertop. Available online: https://github.com/fenrus75/powertop (accessed on 2 April 2023).
- nvidia-smi.txt. Available online: https://developer.download.nvidia.com/compute/DCGM/docs/nvidia-smi-367.38.pdf (accessed on 2 April 2023).
- Liu, K.; Tang, H.; He, S.; Yu, Q.; Xiong, Y.; Wang, N. Performance validation of YOLO variants for object detection. In Proceedings of the 2021 International Conference on Bioinformatics and Intelligent Computing, Harbin, China, 22–24 January 2021; pp. 239–243. [Google Scholar]
Model | System 1 | System 2 | System 3 |
---|---|---|---|
Cancer classification | 0.0051 | 0.695 | 0.0011 |
Energy regression | 0.152 | 0.0234 | 0.0016 |
Image detection | <0.0001 | <0.0001 | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jean-Quartier, C.; Bein, K.; Hejny, L.; Hofer, E.; Holzinger, A.; Jeanquartier, F. The Cost of Understanding—XAI Algorithms towards Sustainable ML in the View of Computational Cost. Computation 2023, 11, 92. https://doi.org/10.3390/computation11050092
Jean-Quartier C, Bein K, Hejny L, Hofer E, Holzinger A, Jeanquartier F. The Cost of Understanding—XAI Algorithms towards Sustainable ML in the View of Computational Cost. Computation. 2023; 11(5):92. https://doi.org/10.3390/computation11050092
Chicago/Turabian StyleJean-Quartier, Claire, Katharina Bein, Lukas Hejny, Edith Hofer, Andreas Holzinger, and Fleur Jeanquartier. 2023. "The Cost of Understanding—XAI Algorithms towards Sustainable ML in the View of Computational Cost" Computation 11, no. 5: 92. https://doi.org/10.3390/computation11050092
APA StyleJean-Quartier, C., Bein, K., Hejny, L., Hofer, E., Holzinger, A., & Jeanquartier, F. (2023). The Cost of Understanding—XAI Algorithms towards Sustainable ML in the View of Computational Cost. Computation, 11(5), 92. https://doi.org/10.3390/computation11050092