Opinion Formation on Social Networks—The Effects of Recurrent and Circular Influence
Abstract
1. Introduction
2. Model
2.1. Mathematical Formulation
2.2. Microscopic Modelling and Extensibility
3. Results
3.1. Features and Interpretation of the Model
3.2. Numerical Demonstrations
3.2.1. Out- and In-Centrality Measures
3.2.2. Betweenness Measure
3.2.3. Demonstration with a Larger Network Structure
3.2.4. Profiling
- If the node’s ratio of the in-centrality to out-centrality is larger than , it is classified as ‘Peripheral’ [or as (Peripheral)].
- If the node’s out-centrality value is larger than , it is classified as ‘Central’ [or as (Central)].
- If the node’s betweenness value is larger than , it is classified as a ‘Mediator’ [or as (Mediator)]. (Sum of betweenness values is normalised to the same value as the out- and in-centrality sums)
4. Conclusions
Funding
Conflicts of Interest
Abbreviations
CC | Complex Contagion |
SC | Simple Contagion |
LCP | Longest Common Prefix |
Appendix A
References
- Barabási, A.-L.; Pósfai, M. Network Science; Cambridge University Press: Cambridge, UK, 2016. [Google Scholar]
- Rogers, E.M. Diffusion of Innovations, 5th ed.; Free Press: New York, NY, USA, 2003; p. 576. [Google Scholar]
- Friedkin, N.E. Theoretical foundations for centrality measures. Am. J. Sociol. 1991, 96, 1478–1504. [Google Scholar] [CrossRef]
- Friedkin, N.E.; Proskurnikov, A.V. Generalized Markovian Quantity Distribution Systems: Social Science Applications. Sociol. Sci. 2020, 7, 487–503. [Google Scholar] [CrossRef]
- Granovetter, M.S. The Strength of Weak Ties. Am. J. Sociol. 1973, 78, 1360–1380. [Google Scholar] [CrossRef]
- Burt, R.S. Structural Holes: The Social Structure of Competition; Harvard University Press: Cambridge, MA, USA, 1995. [Google Scholar]
- Bonifazi, G.; Cauteruccio, F.; Corradini, E.; Marchetti, M.; Sciarretta, L.; Ursino, D.; Virgili, L. A Space-Time Framework for Sentiment Scope Analysis in Social Media. Big Data Cogn. Comput. 2022, 6, 130. [Google Scholar] [CrossRef]
- An, L.; Zhou, W.; Ou, M.; Li, G.; Yu, C.; Wang, X. Measuring and profiling the topical influence and sentiment contagion of public event stakeholders. Int. J. Inf. Manag. 2021, 58, 102327. [Google Scholar] [CrossRef]
- Diaz Ruiz, C.; Nilsson, T. Disinformation and Echo Chambers: How Disinformation Circulates on Social Media Through Identity-Driven Controversies. J. Public Policy Mark. 2023, 42, 18–35. [Google Scholar] [CrossRef]
- Wardle, C. A New World Disorder—Our willingness to share content without thinking is exploited to spread disinformation. Sci. Am. 2019, 2019, 82–86. [Google Scholar]
- Kirkley, A.; Cantwell, G.T.; Newman, M. Belief propagation for networks with loops. Sci. Adv. 2021, 7, eabf1211. [Google Scholar] [CrossRef]
- Fernandez Peralta, A.; Kertész, J.; Iñiguez, G. Opinion dynamics in social networks: From models to data. arXiv 2023, arXiv:2201.01322. [Google Scholar] [CrossRef]
- Perra, N.; Rocha, L.E. Modelling opinion dynamics in the age of algorithmic personalisation. Sci. Rep. 2019, 9, 7261. [Google Scholar] [CrossRef]
- Nguyen, V.X.; Xiao, G.; Xu, X.J.; Wu, Q.; Xia, C.Y. Dynamics of opinion formation under majority rules on complex social networks. Sci. Rep. 2020, 10, 456. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Zhang, L.; Huang, H. Social influence analysis: Models, methods, and evaluation. Engineering 2018, 4, 40–46. [Google Scholar] [CrossRef]
- Dudkina, E.; Bin, M.; Breen, J.; Crisostomi, E.; Ferraro, P.; Kirkland, S.; Marecek, J.; Murray-Smith, R.; Parisini, T.; Stone, L.; et al. A comparison of centrality measures and their role in controlling the spread in epidemic networks. Int. J. Control 2023, 1. [Google Scholar] [CrossRef]
- Kamp, C.; Moslonka-Lefebvre, M.; Alizon, S. Epidemic spread on weighted networks. PLoS Comput. Biol. 2013, 9, e1003352. [Google Scholar] [CrossRef]
- Feng, M.; Li, X.; Li, Y.; Li, Q. The impact of nodes of information dissemination on epidemic spreading in dynamic multiplex networks. Chaos Interdiscip. J. Nonlinear Sci. 2023, 33, 043112. [Google Scholar] [CrossRef]
- Castellano, C.; Pastor-Satorras, R. Thresholds for epidemic spreading in networks. Phys. Rev. Lett. 2010, 105, 218701. [Google Scholar] [CrossRef]
- Kuikka, V. Modelling epidemic spreading in structured organisations. Phys. A Stat. Mech. Its Appl. 2022, 592, 126875. [Google Scholar] [CrossRef]
- Romero, D.M.; Meeder, B.; Kleinberg, J. Differences in the mechanics of information diffusion across topics: Idioms, political hashtags, and complex contagion on twitter. In Proceedings of the 20th International Conference on World Wide Web, WWW’11, Hyderabad, India, 28 March–1 April 2011; Association for Computing Machinery: New York, NY, USA, 2011; pp. 695–704. [Google Scholar] [CrossRef]
- Hamzehei, A.; Jiang, S.; Koutra, D.; Wong, R.; Chen, F. Topic-based social influence measurement for social networks. Australas. J. Inf. Syst. 2017, 21. [Google Scholar] [CrossRef]
- Guilbeault, D.; Becker, J.; Centola, D. Complex Contagions: A Decade in Review. In Complex Spreading Phenomena in Social Systems: Influence and Contagion in Real-World Social Networks; Lehmann, S., Ahn, Y.Y., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 3–25. [Google Scholar] [CrossRef]
- Ghasemiesfeh, G.; Ebrahimi, R.; Gao, J. Complex Contagion and the Weakness of Long Ties in Social Networks: Revisited. In Proceedings of the Fourteenth ACM Conference on Electronic Commerce, EC’13, Philadelphia, PA, USA, 16–20 June 2018; Association for Computing Machinery: New York, NY, USA, 2018; pp. 507–524. [Google Scholar] [CrossRef]
- Centola, D.; Macy, M. Complex contagions and the weakness of long ties. Am. J. Sociol. 2007, 113, 702–734. [Google Scholar] [CrossRef]
- Lambiotte, R.; Rosvall, M.; Scholtes, I. From networks to optimal higher-order models of complex systems. Nat. Phys. 2019, 15, 313–320. [Google Scholar] [CrossRef]
- Zhang, Y.; Lucas, M.; Battiston, F. Higher-order interactions shape collective dynamics differently in hypergraphs and simplicial complexes. Nat. Commun. 2023, 14, 1605. [Google Scholar] [CrossRef] [PubMed]
- Bick, C.; Goodfellow, M.; Laing, C.R.; Martens, E.A. Understanding the dynamics of biological and neural oscillator networks through exact mean-field reductions: A review. J. Math. Neurosci. 2020, 10, 9. [Google Scholar] [CrossRef] [PubMed]
- Min, B.; San Miguel, M. Competing contagion processes: Complex contagion triggered by simple contagion. Sci. Rep. 2018, 8, 10422. [Google Scholar] [CrossRef] [PubMed]
- Flache, A.; Mäs, M.; Feliciani, T.; Chattoe-Brown, E.; Deffuant, G.; Huet, S.; Lorenz, J. Models of social influence: Towards the next frontiers. J. Artif. Soc. Soc. Simul. 2017, 20. [Google Scholar] [CrossRef]
- Kozitsin, I.V. A general framework to link theory and empirics in opinion formation models. Sci. Rep. 2022, 12, 5543. [Google Scholar] [CrossRef] [PubMed]
- Borgatti, S.P.; Halgin, D.S. On network theory. Organ. Sci. 2011, 22, 1168–1181. [Google Scholar] [CrossRef]
- Gómez, S. Centrality in Networks: Finding the Most Important Nodes. Bus. Consum. Anal. New Ideas 2019, 401–433. [Google Scholar] [CrossRef]
- Landherr, A.; Friedl, B.; Heidemann, J. A Critical Review of Centrality Measures in Social Networks. Bus. Inf. Syst. Eng. 2010, 2, 371–385. [Google Scholar] [CrossRef]
- Ronqui, J.R.F.; Travieso, G. Analyzing complex networks through correlations in centrality measurements. J. Stat. Mech. Theory Exp. 2015, 2015, P05030. [Google Scholar] [CrossRef]
- Lawyer, G. Understanding the influence of all nodes in a network. Sci. Rep. 2015, 5, 8665. [Google Scholar] [CrossRef]
- ÅžimÅŸek, A. Lexical sorting centrality to distinguish spreading abilities of nodes in complex networks under the Susceptible-Infectious-Recovered (SIR) model. J. King Saud Univ.-Comput. Inf. Sci. 2022, 34, 4810–4820. [Google Scholar] [CrossRef]
- Zhu, X.; Huang, J. SpreadRank: A Novel Approach for Identifying Influential Spreaders in Complex Networks. Entropy 2023, 25, 637. [Google Scholar] [CrossRef] [PubMed]
- Kuikka, V. Influence spreading model used to analyse social networks and detect sub-communities. Comput. Soc. Netw. 2018, 5, 12–15. [Google Scholar] [CrossRef] [PubMed]
- Kuikka, V. Modelling community structure and temporal spreading on complex networks. Comput. Soc. Netw. 2021, 8, 13. [Google Scholar] [CrossRef]
- Kuikka, V.; Aalto, H.; Ijäs, M.; Kaski, K.K. Efficiency of algorithms for computing influence and information spreading on social networks. Algorithms 2022, 15, 262. [Google Scholar] [CrossRef]
- Kuikka, V.; Pham, M.A.A. Models of influence spreading on social networks. In Proceedings of the Complex Networks & Their Applications X; Benito, R.M., Cherifi, C., Cherifi, H., Moro, E., Rocha, L.M., Sales-Pardo, M., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 112–123. [Google Scholar] [CrossRef]
- Almiala, I.; Kuikka, V. Similarity of epidemic spreading and information network connectivity mechanisms demonstrated by analysis of two probabilistic models. AIMS Biophys. 2023, 10, 173–183. [Google Scholar] [CrossRef]
- Kuikka, V. Modelling Influence Spreading on Complex Networks. Ph.D. Thesis, School of Science, Aalto University, Espoo, Finland, 2022. [Google Scholar]
- Sun, Y.; Ma, L.; Zeng, A.; Wang, W.X. Spreading to localized targets in complex networks. Sci. Rep. 2016, 6, 38865. [Google Scholar] [CrossRef]
- Ijäs, M.; Levijoki, J.; Kuikka, V. Scalable Algorithm for Computing Influence Spreading Probabilities in Social Networks. In Proceedings of the 5th European Conference on Social Media, Limerick, Irland, 21–22 June 2018. [Google Scholar]
- Kuikka, V.; Monsivais, D.; Kaski, K.K. Influence spreading model in analysing ego-centric social networks. Phys. A Stat. Mech. Its Appl. 2022, 588, 126524. [Google Scholar] [CrossRef]
- Van de Bunt, G. Friends by Choice. An Actor-Oriented Statistical Network Model for Friendship Networks through Time. Ph.D. Thesis, University of Groningen, Groningen, The Netherlands, 1999. [Google Scholar]
- Leskovec, J.; Krevl, A. SNAP Datasets: Stanford Large Network Dataset Collection. 2014. Available online: http://snap.stanford.edu/data (accessed on 1 April 2023).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuikka, V. Opinion Formation on Social Networks—The Effects of Recurrent and Circular Influence. Computation 2023, 11, 103. https://doi.org/10.3390/computation11050103
Kuikka V. Opinion Formation on Social Networks—The Effects of Recurrent and Circular Influence. Computation. 2023; 11(5):103. https://doi.org/10.3390/computation11050103
Chicago/Turabian StyleKuikka, Vesa. 2023. "Opinion Formation on Social Networks—The Effects of Recurrent and Circular Influence" Computation 11, no. 5: 103. https://doi.org/10.3390/computation11050103
APA StyleKuikka, V. (2023). Opinion Formation on Social Networks—The Effects of Recurrent and Circular Influence. Computation, 11(5), 103. https://doi.org/10.3390/computation11050103