Survey of Recent Deep Neural Networks with Strong Annotated Supervision in Histopathology
Abstract
:1. Introduction
2. Materials and Methods—Convolutional Neural Network
3. Classification of Histopathology Images
3.1. Strong-Annotations Approach (Patch-Level Annotation)
3.2. Fine-Tuning
Reference | Cancer Types | Staining | Dataset | Neural Networks in Models | Method |
---|---|---|---|---|---|
Abousamra et al. (2022) [14] | 23 cancer types | H&E | The Cancer Genome Atlas (TCGA) | Vgg-16, ResNet-34, InceptionV4 | Patch-level classification of Tumor infiltrating lymphocytes (TIL) |
Yang et al. (2021) [18] | Lung cancer | H&E | Custom dataset of 1271 WSIs and 422 WSIs from TCGA | ResNet-50, EfficientNet-B5 | Six-type classification of lung lesions including pulmonary tuberculosis and Organizing pneumonia |
Hameed et al. (2020) [21] | Breast cancer | H&E | Custom dataset of 544 WSIs | VGG-16, VGG-19 | Ensemble of neural networks to classify carcinoma and non-carcinoma images |
Yu et.al (2020) [26] | Ovarian cancer | H&E | TCGA | AlexNet, GoogLeNet, VGG-16 | Cancerous regions identification and grades classification |
Liu et al. (2020) [35] | Different types of cancer | H&E, IHC (Ki67) | Custom dataset from 300 Regions of interest | ResNet-18 | Classification of Ki67 positive and negative cells |
Baid et al. (2022) [38] | 12 types | H&E | TCGA | VGG-16 | Federated learning for classification of tumor infiltrating lymphocytes |
Cheng et al. (2022) [29] | Liver cancer | H&E | Custom dataset | ResNet50, InceptionV3, Xception | Ensemble of 3 networks pretrained on ImageNet used to differentiate Hepatocellular nodular lesions (5 types) with nodular cirrhosis and nearly normal liver tissue |
Shovon et al. (2022) [36] | Breast cancer | H&E | BCI dataset | Modified Xception | Four class classification of HER2 with modified Xception model pretrained on ImageNet |
Rao et al. (2022) [30] | Odontogenic cysts | H&E | Custom dataset | Inception-V3, DenseNet-121, Inception-Resnet-V2 | Binary classification of cyst recurrence based on decision algorithm consisting of 3 models |
Farahani et al. (2022) [22] | Ovarian cancer | H&E | Custom dataset | VGG19 | Comparison of classification of ovarian carcinoma histotype by four models |
Sarker et al. (2023) [23] | Breast cancer | H&E | BreakHis dataset | Modified EfficientNetV2 | Binary classification of malignant and benign tissue and multi-class subtyping using fused mobile inverted bottleneck convolutions and mobile inverted bottleneck convolutions with dual squeeze and excitation network and EfficientNetV2 as backbone |
Luo et al. (2022) [25] | Eyelid carcinoma | H&E | Custom dataset | DenseNet161 | The differential diagnosis of eyelid basal cell carcinoma and sebaceous carcinoma based on patch prediction by the DenseNet161 architecture and WSI differentiation by an average-probability strategy-based integration module |
Mundhada et al. (2023) [31] | Bladder cancer | H&E | Custom dataset | VGG16 | Grading of non-invasive carcinoma |
Khan et al. (2023) [20] | Breast and colon cancer | H&E | PatchCamelyon | Xception | Segmentation of lymph node tissue with subsequent classification to detect metastases |
Hameed et al. (2022) [24] | Breast cancer | H&E | Colsanitas dataset | Xception | Using Xception networks as feature extractor to classify breast cancer into four categories: normal tissue, benign lesion, in situ carcinoma, and invasive carcinoma |
3.3. Training from Scratch
Reference | Cancer Types | Staining | Dataset | Neural Networks in Models | Method |
---|---|---|---|---|---|
Wu et al. (2020) [39] | Lung cancer | H&E | 211 samples from TCGA | Custom CNN with residual blocks | Prediction of lung cancer recurrence |
Huang et al. (2021) [40] | Lung cancer | H&E | TCGA | Custom CNN with residual blocks | Identification of the bio-markers of lung cancer |
Steinbuss et al. (2021) [41] | Blood cancer | H&E | Custom dataset from 629 patients | EfficientNet | Classification of tumor-free lymph nodes, nodal small lymphocytic lymphoma/chronic lymphocytic leukemia, and nodal diffuse large B-cell lymphoma |
Panigrahi et al. (2022) [42] | Oral cancer | H&E | Custom dataset | Three ResNet architectures | Classification of 3 grades |
Wang et al. (2021) [44] | Breast cancer | H&E | Custom dataset of 222 images | ResNet-18 | BRCA gene mutations prediction |
Le Page et al. (2021) [45] | Lung cancer | H&E | Custom dataset of 197 images and 60 images from TCGA | InceptionV3 | Classification of patches (tiles) into cancer subtypes. For final case classification they used majority-vote method or highest probability class |
Zormpas-Petridis et al. (2021) [46] | Melanoma, breast cancer and childhood neuroblastoma | H&E | Custom dataset | Custom CNN | Classification of the: melanoma (tumor tissue, stroma, cluster of lymphocytes, normal epidermis, fat, and empty/white space) breast cancer (tumor, necrosis, stroma, cluster of lymphocytes, fat, and lumen/empty space) neuroblastoma (undifferentiated neuroblasts, tissue damage (necrosis/apoptosis), areas of differentiation, cluster of lymphocytes, hemorrhage, muscle, kidney, and empty/white space) |
Abdolahi et al. (2020) [48] | Breast cancer | H&E | Kaggle | Custom CNN, VGG-16 | Classification of invasive ductal carcinoma |
Yang et al. (2022) [47] | Lung cancer | H&E | Custom dataset | Custom CNN | Comparison of classification lung cancer by fine-tuned models and models trained from scratch |
Abdeltawab et al. (2022) [43] | Kidney cancer | H&E | Custom dataset | Custom CNN | An ensemble-pyramidal deep learning model consisting of three CNNs processing different image sizes to differentiate 4 tissue subtypes |
3.4. Multi-Stage Classification
Reference | Cancer Types | Staining | Dataset | Neural Networks in Models | Method |
---|---|---|---|---|---|
Sadhwani et al. (2021) [49] | Lung cancer | H&E | TCGA and custom dataset of 50 WSIs | Custom CNN | Multiclassification into subtypes and binary classification of Tumor Mutation Burden |
Wu et al. (2021) [51] | Renal cell cancer (RCC) | H&E | 667 WSIs from TCGA + new RCC dataset of 632 WSIs | InceptionV3 | Identification of tumor regions and classification into tumor subtypes and different grades |
Jin et.al (2021) [52] | Brain cancer | H&E | slides of 323 patients from the Central Nervous System Disease Biobank | custom CNN based on DenseNet | Classification into 5 subtypes of glioma |
Anand et al. (2020) [53] | Breast cancer | H&E, IHC | dataset from University of Warwick and TCGA | Custom neural network | Identification of tumor patches and classification of HER2 into positive or negative |
Dong et al. (2022) [55] | Liver cancer | H&E | Custom dataset of 73 images | ResNet-50, VGG-16, DenseNet-201, InceptionResNetV2 | Classification of three differentiation states |
Mi et al. (2021) [58] | Breast cancer | H&E | Custom dataset of 540 WSIs | InceptionV3 | Multi-class classification of normal tissue, benign lesion, ductal carcinoma in situ, and invasive carcinoma |
Fu et al. (2021) [61] | Pancreas | H&E | Custom dataset of 231 WSIs | InceptionV3 | Classification of patches into cancerous or normal |
Ma et al. (2020) [63] | Gastric cancer | H&E | Custom dataset of 763 WSIs | InceptionV3 | Classification of normal mucosa, chronic gastritis, and intestinal-type |
Attallah (2021) [67] | Brain cancer | H&E | Custom dataset of 204 images | ResNet-50, DenseNet-201, MobileNet | Classification of normal and abnormal Medulloblastoma |
Attallah (2021) [69] | Brain cancer | H&E | Custom dataset of 204 images | 10 CNN architectures | Multi-class classification of 4 medulloblastoma subtypes |
Yan et al. (2022) [64] | Breast and colorectal cancer | H&E | BACH dataset and datasets avaiable from different articles | Xception | Classification of breast cancer, colorectal and breast cancer grading based on Divide-and-Attention Network using Xception CNN as backbone |
Yan et al. (2022) [65] | Breast cancer | H&E | Custom dataset | NGNet | Grading of breast cancer using attention modules and segmentation. Classification is done with two images: original image and corresponding nuclei image) |
Raczkowski et al. (2022) [60] | Lung cancer | H&E | Custom dataset | ARA-CNN | Classification of mutation based on tissue prevalence and tumor microenvironment composition computed from ARA-CNN output. CNN was used to classify patches into 9 tissue subtypes |
Wessels et al. (2022) [57] | Kidney cancer | H&E | TCGA | ResNet18 | Pretrained ResNet18 CNN was used to predict 5-year overal survival in renal cell carcinoma. Furthermore, the CNN-based classification was an independent predictor in a multivariable clinicopathological model |
4. Discussion
4.1. Tissue Types
4.2. Tissue Grading
4.3. Bio-Marker Classification
5. Conclusions
- Application Areas: Deep learning has been applied to several types of cancer (e.g., breast, lung, colon, brain, kidney) and has proven to be capable of assisting pathologists with visual tasks in the treatment of various diseases. The reviewed works have identified the following three groups of specific tasks: classification of tissue type, grading of specific tissue, and identification of the presence of biomarkers.
- Single- and Multi-Stage Approaches: Convolutional neural networks can be applied either as a stand-alone classifier or can be used as a feature extractor whose outputs will proceed into another machine learning model to carry out the final classification.
- Pre-Training: Training networks from scratch requires a large dataset and a lot of computing time. Therefore, it is recommended to experiment with well-known architectures pre-trained on ImageNet. If the results are not sufficient, then one can design their own custom network and train it from scratch.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
AUC | Area Under Curve |
BCI | Breast Cancer Immunohistochemical |
DL | Deep Learning |
CNNs | Convolutional Neural Networks |
WSIs | Whole Slide Images |
NNs | Neural Networks |
TIL | Tumor Infiltrating Lymphocytes |
H&E | Hematoxylin and Eosin |
IHC | Immunohistochemical |
FL | Federated Learning |
GDPR | General Data Protection Regulation |
SLIC | Simple Linear Iterative Clustering |
TMB | Tumor Mutation Burden |
ML | Machine Learning |
HER2 | Human Epidermal Growth Factor Receptor 2 |
SVM | Support-vector machines |
k-NN | k-Nearest Neighbor |
RF | Random Forest |
GC | Gastric Cancer |
MB | Medulloblastoma |
DWT | Discrete Wavelet Transform |
RCC | Renal cell cancer |
References
- Pantanowitz, L. Digital images and the future of digital pathology: From the 1st Digital Pathology Summit, New Frontiers in Digital Pathology, University of Nebraska Medical Center, Omaha, Nebraska 14–15 May 2010. J. Pathol. Inform. 2010, 1, 15. [Google Scholar] [CrossRef]
- Komura, D.; Ishikawa, S. Machine Learning Methods for Histopathological Image Analysis. Comput. Struct. Biotechnol. J. 2018, 16, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Srinidhi, C.L.; Ciga, O.; Martel, A.L. Deep neural network models for computational histopathology: A survey. Med. Image Anal. 2021, 67, 101813. [Google Scholar] [CrossRef] [PubMed]
- Alzubi, J.; Nayyar, A.; Kumar, A. Machine Learning from Theory to Algorithms: An Overview. J. Phys. Conf. Ser. 2018, 1142, 012012. [Google Scholar] [CrossRef]
- Jordan, M.I.; Mitchell, T.M. Machine learning: Trends, perspectives, and prospects. Science 2015, 349, 255–260. [Google Scholar] [CrossRef]
- Litjens, G.; Kooi, T.; Bejnordi, B.E.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; van der Laak, J.A.; van Ginneken, B.; Sánchez, C.I. A survey on deep learning in medical image analysis. Med. Image Anal. 2017, 42, 60–88. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Lu, S.; Zhu, D.; Lin, J.; Wang, Z. A High-Speed and Low-Complexity Architecture for Softmax Function in Deep Learning. In Proceedings of the 2018 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), Chengdu, China, 26–30 October 2018; pp. 223–226. [Google Scholar] [CrossRef]
- Ahmad, J.; Farman, H.; Jan, Z. Deep Learning Methods and Applications. In Deep Learning: Convergence to Big Data Analytics; Springer: Singapore, 2019; pp. 31–42. [Google Scholar] [CrossRef]
- Yao, G.; Lei, T.; Zhong, J. A review of Convolutional-Neural-Network-based action recognition. Pattern Recognit. Lett. 2019, 118, 14–22. [Google Scholar] [CrossRef]
- Dhillon, A.; Verma, G.K. Convolutional neural network: A review of models, methodologies and applications to object detection. Prog. Artif. Intell. 2019, 9, 85–112. [Google Scholar] [CrossRef]
- Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.; Farhan, L. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. J. Big Data 2021, 8, 53. [Google Scholar] [CrossRef]
- O’Shea, K.; Nash, R. An Introduction to Convolutional Neural Networks. arXiv 2015, arXiv:1511.08458. [Google Scholar] [CrossRef]
- Dimitriou, N.; Arandjelović, O.; Caie, P.D. Deep Learning for Whole Slide Image Analysis: An Overview. Front. Med. 2019, 6, 00264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abousamra, S.; Gupta, R.; Hou, L.; Batiste, R.; Zhao, T.; Shankar, A.; Rao, A.; Chen, C.; Samaras, D.; Kurc, T.; et al. Deep Learning-Based Mapping of Tumor Infiltrating Lymphocytes in Whole Slide Images of 23 Types of Cancer. Front. Oncol. 2022, 11, 806603. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. Computational and Biological Learning Society. arXiv 2015, arXiv:1409.1556. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Los Alamitos, CA, USA, 27–30 June 2016; pp. 770–778. [Google Scholar] [CrossRef] [Green Version]
- Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A. Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning. In Proceedings of the AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017; Volume 31. [Google Scholar] [CrossRef]
- Yang, H.; Chen, L.; Cheng, Z.; Yang, M.; Wang, J.; Lin, C.; Wang, Y.; Huang, L.; Chen, Y.; Peng, S.; et al. Deep learning-based six-type classifier for lung cancer and mimics from histopathological whole slide images: A retrospective study. BMC Med. 2021, 19, 80. [Google Scholar] [CrossRef]
- Tan, M.; Le, Q. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. In Proceedings of the 36th International Conference on Machine Learning, PMLR, Long Beach, CA, USA, 9–15 June 2019; Chaudhuri, K., Salakhutdinov, R., Eds.; JMLR: Cambridge, MA, USA, 2019; Volume 97, pp. 6105–6114. [Google Scholar]
- Khan, A.; Brouwer, N.; Blank, A.; Müller, F.; Soldini, D.; Noske, A.; Gaus, E.; Brandt, S.; Nagtegaal, I.; Dawson, H.; et al. Computer-assisted diagnosis of lymph node metastases in colorectal cancers using transfer learning with an ensemble model. Mod. Pathol. 2023, 36, 100118. [Google Scholar] [CrossRef]
- Hameed, Z.; Zahia, S.; Garcia-Zapirain, B.; Javier Aguirre, J.; María Vanegas, A. Breast Cancer Histopathology Image Classification Using an Ensemble of Deep Learning Models. Sensors 2020, 20, 4373. [Google Scholar] [CrossRef] [PubMed]
- Farahani, H.; Boschman, J.; Farnell, D.; Darbandsari, A.; Zhang, A.; Ahmadvand, P.; Jones, S.J.M.; Huntsman, D.; Köbel, M.; Gilks, C.B.; et al. Deep learning-based histotype diagnosis of ovarian carcinoma whole-slide pathology images. Mod. Pathol. 2022, 35, 1983–1990. [Google Scholar] [CrossRef] [PubMed]
- Sarker, M.M.K.; Akram, F.; Alsharid, M.; Singh, V.K.; Yasrab, R.; Elyan, E. Efficient Breast Cancer Classification Network with Dual Squeeze and Excitation in Histopathological Images. Diagnostics 2023, 13, 103. [Google Scholar] [CrossRef]
- Hameed, Z.; Garcia-Zapirain, B.; Aguirre, J.J.; Isaza-Ruget, M.A. Multiclass classification of breast cancer histopathology images using multilevel features of deep convolutional neural network. Sci. Rep. 2022, 12, 15600. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, J.; Yang, Y.; Rao, Y.; Chen, X.; Shi, T.; Xu, S.; Jia, R.; Gao, X. Deep learning-based fully automated differential diagnosis of eyelid basal cell and sebaceous carcinoma using whole slide images. Quant. Imaging Med. Surg. 2022, 4166–4175. [Google Scholar] [CrossRef]
- Yu, K.H.; Hu, V.; Wang, F.; Matulonis, U.A.; Mutter, G.L.; Golden, J.A.; Kohane, I.S. Deciphering serous ovarian carcinoma histopathology and platinum response by convolutional neural networks. BMC Med. 2020, 18, 236. [Google Scholar] [CrossRef] [PubMed]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. In Proceedings of the Advances in Neural Information Processing Systems, Virtual, 6–12 December 2020; Pereira, F., Burges, C., Bottou, L., Weinberger, K., Eds.; Curran Associates, Inc.: New York, NY, USA, 2012; Volume 25. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar] [CrossRef] [Green Version]
- Cheng, N.; Ren, Y.; Zhou, J.; Zhang, Y.; Wang, D.; Zhang, X.; Chen, B.; Liu, F.; Lv, J.; Cao, Q.; et al. Deep learning-based classification of hepatocellular nodular lesions on whole-slide histopathologic images. Gastroenterology 2022, 162, 1948–1961.e7. [Google Scholar] [CrossRef] [PubMed]
- Rao, R.S.; Shivanna, D.B.; Lakshminarayana, S.; Mahadevpur, K.S.; Alhazmi, Y.A.; Bakri, M.M.H.; Alharbi, H.S.; Alzahrani, K.J.; Alsharif, K.F.; Banjer, H.J.; et al. Ensemble Deep-Learning-Based Prognostic and Prediction for Recurrence of Sporadic Odontogenic Keratocysts on Hematoxylin and Eosin Stained Pathological Images of Incisional Biopsies. J. Pers. Med. 2022, 12, 1220. [Google Scholar] [CrossRef] [PubMed]
- Mundhada, A.; Sundaram, S.; Swaminathan, R.; D’ Cruze, L.; Govindarajan, S.; Makaram, N. Differentiation of urothelial carcinoma in histopathology images using deep learning and visualization. J. Pathol. Inform. 2023, 14, 100155. [Google Scholar] [CrossRef]
- Naik, N.; Madani, A.; Esteva, A.; Keskar, N.S.; Press, M.F.; Ruderman, D.; Agus, D.B.; Socher, R. Deep learning-enabled breast cancer hormonal receptor status determination from base-level H&E stains. Nat. Commun. 2020, 11, 5727. [Google Scholar] [CrossRef]
- Seegerer, P.; Binder, A.; Saitenmacher, R.; Bockmayr, M.; Alber, M.; Jurmeister, P.; Klauschen, F.; Müller, K.R. Interpretable Deep Neural Network to Predict Estrogen Receptor Status from Haematoxylin-Eosin Images. In Artificial Intelligence and Machine Learning for Digital Pathology: State-of-the-Art and Future Challenges; Holzinger, A., Goebel, R., Mengel, M., Müller, H., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 16–37. [Google Scholar] [CrossRef]
- Rawat, R.R.; Ortega, I.; Roy, P.; Sha, F.; Shibata, D.; Ruderman, D.; Agus, D.B. Deep learned tissue “fingerprints” classify breast cancers by ER/PR/Her2 status from H&E images. Sci. Rep. 2020, 10, 7275. [Google Scholar] [CrossRef]
- Liu, Y.; Li, X.; Zheng, A.; Zhu, X.; Liu, S.; Hu, M.; Luo, Q.; Liao, H.; Liu, M.; He, Y.; et al. Predict Ki-67 Positive Cells in H&E-Stained Images Using Deep Learning Independently From IHC-Stained Images. Front. Mol. Biosci. 2020, 7, 00183. [Google Scholar] [CrossRef]
- Shovon, M.S.H.; Islam, M.J.; Nabil, M.N.A.K.; Molla, M.M.; Jony, A.I.; Mridha, M.F. Strategies for Enhancing the Multi-Stage Classification Performances of HER2 Breast Cancer from Hematoxylin and Eosin Images. Diagnostics 2022, 12, 2825. [Google Scholar] [CrossRef]
- Voigt, P.; von dem Bussche, A. The EU General Data Protection Regulation (GDPR), 1st ed.; Springer International Publishing: Cham, Switzerland, 2017. [Google Scholar]
- Baid, U.; Pati, S.; Kurc, T.M.; Gupta, R.; Bremer, E.; Abousamra, S.; Thakur, S.P.; Saltz, J.H.; Bakas, S. Federated Learning for the Classification of Tumor Infiltrating Lymphocytes. arXiv 2022, arXiv:2203.16622. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, L.; Li, C.; Cai, Y.; Liang, Y.; Mo, X.; Lu, Q.; Dong, L.; Liu, Y. DeepLRHE: A deep convolutional neural network framework to evaluate the risk of lung cancer recurrence and metastasis from histopathology images. Front. Genet. 2020, 11, 768. [Google Scholar] [CrossRef]
- Huang, K.; Mo, Z.; Zhu, W.; Liao, B.; Yang, Y.; Wu, F.X. Prediction of Target-Drug Therapy by Identifying Gene Mutations in Lung Cancer With Histopathological Stained Image and Deep Learning Techniques. Front. Oncol. 2021, 11, 642945. [Google Scholar] [CrossRef]
- Steinbuss, G.; Kriegsmann, M.; Zgorzelski, C.; Brobeil, A.; Goeppert, B.; Dietrich, S.; Mechtersheimer, G.; Kriegsmann, K. Deep Learning for the Classification of Non-Hodgkin Lymphoma on Histopathological Images. Cancers 2021, 13, 2419. [Google Scholar] [CrossRef]
- Panigrahi, S.; Bhuyan, R.; Kumar, K.; Nayak, J.; Swarnkar, T. Multistage classification of oral histopathological images using improved residual network. Math. Biosci. Eng. 2022, 19, 1909–1925. [Google Scholar] [CrossRef] [PubMed]
- Abdeltawab, H.A.; Khalifa, F.A.; Ghazal, M.A.; Cheng, L.; El-Baz, A.S.; Gondim, D.D. A deep learning framework for automated classification of histopathological kidney whole-slide images. J. Pathol. Inform. 2022, 13, 100093. [Google Scholar] [CrossRef]
- Wang, X.; Zou, C.; Zhang, Y.; Li, X.; Wang, C.; Ke, F.; Chen, J.; Wang, W.; Wang, D.; Xu, X.; et al. Prediction of BRCA Gene Mutation in Breast Cancer Based on Deep Learning and Histopathology Images. Front. Genet. 2021, 12, 661109. [Google Scholar] [CrossRef]
- Le Page, A.L.; Ballot, E.; Truntzer, C.; Derangère, V.; Ilie, A.; Rageot, D.; Bibeau, F.; Ghiringhelli, F. Using a convolutional neural network for classification of squamous and non-squamous non-small cell lung cancer based on diagnostic histopathology HES images. Sci. Rep. 2021, 11, 23912. [Google Scholar] [CrossRef] [PubMed]
- Zormpas-Petridis, K.; Noguera, R.; Ivankovic, D.K.; Roxanis, I.; Jamin, Y.; Yuan, Y. SuperHistopath: A Deep Learning Pipeline for Mapping Tumor Heterogeneity on Low-Resolution Whole-Slide Digital Histopathology Images. Front. Oncol. 2021, 10, 586292. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.W.; Song, D.H.; An, H.J.; Seo, S.B. Classification of subtypes including LCNEC in lung cancer biopsy slides using convolutional neural network from scratch. Sci. Rep. 2022, 12, 1830. [Google Scholar] [CrossRef]
- Abdolahi, M.; Salehi, M.; Shokatian, I.; Reiazi, R. Artificial intelligence in automatic classification of invasive ductal carcinoma breast cancer in digital pathology images. Med. J. Islam. Repub. Iran 2020, 34, 140. [Google Scholar] [CrossRef]
- Sadhwani, A.; Chang, H.W.; Behrooz, A.; Brown, T.; Auvigne-Flament, I.; Patel, H.; Findlater, R.; Velez, V.; Tan, F.; Tekiela, K.; et al. Comparative analysis of machine learning approaches to classify tumor mutation burden in lung adenocarcinoma using histopathology images. Sci. Rep. 2021, 11, 16605. [Google Scholar] [CrossRef] [PubMed]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for Computer Vision. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016; pp. 2818–2826. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Zhang, R.; Gong, T.; Bao, X.; Gao, Z.; Zhang, H.; Wang, C.; Li, C. A Precision Diagnostic Framework of Renal Cell Carcinoma on Whole-Slide Images using Deep Learning. In Proceedings of the 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Houston, TX, USA, 9–12 December 2021; pp. 2104–2111. [Google Scholar] [CrossRef]
- Jin, L.; Shi, F.; Chun, Q.; Chen, H.; Ma, Y.; Wu, S.; Hameed, N.U.F.; Mei, C.; Lu, J.; Zhang, J.; et al. Artificial intelligence neuropathologist for glioma classification using deep learning on hematoxylin and eosin stained slide images and molecular markers. Neuro. Oncol. 2021, 23, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Anand, D.; Kurian, N.C.; Dhage, S.; Kumar, N.; Rane, S.; Gann, P.H.; Sethi, A. Deep Learning to Estimate Human Epidermal Growth Factor Receptor 2 Status from Hematoxylin and Eosin-Stained Breast Tissue Images. J. Pathol. Inform. 2020, 11, 19. [Google Scholar] [CrossRef] [PubMed]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. arXiv 2015, arXiv:1505.04597. [Google Scholar] [CrossRef]
- Dong, X.; Li, M.; Zhou, P.; Deng, X.; Li, S.; Zhao, X.; Wu, Y.; Qin, J.; Guo, W. Fusing pre-trained convolutional neural networks features for multi-differentiated subtypes of liver cancer on histopathological images. BMC Med. Inform. Decis. Mak. 2022, 22, 122. [Google Scholar] [CrossRef]
- Huang, G.; Liu, Z.; van der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. arXiv 2016, arXiv:1608.06993. [Google Scholar] [CrossRef]
- Wessels, F.; Schmitt, M.; Krieghoff-Henning, E.; Kather, J.N.; Nientiedt, M.; Kriegmair, M.C.; Worst, T.S.; Neuberger, M.; Steeg, M.; Popovic, Z.V.; et al. Deep learning can predict survival directly from histology in clear cell renal cell carcinoma. PLoS ONE 2022, 17, e0272656. [Google Scholar] [CrossRef] [PubMed]
- Mi, W.; Li, J.; Guo, Y.; Ren, X.; Liang, Z.; Zhang, T.; Zou, H. Deep learning-based multi-class classification of breast digital pathology images. Cancer Manag. Res. 2021, 13, 4605–4617. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, San Francisco, CA, USA, 13–17 August 2016. [Google Scholar] [CrossRef] [Green Version]
- Rączkowski, Ł.; Paśnik, I.; Kukiełka, M.; Nicoś, M.; Budzinska, M.A.; Kucharczyk, T.; Szumiło, J.; Krawczyk, P.; Crosetto, N.; Szczurek, E. Deep learning-based tumor microenvironment segmentation is predictive of tumor mutations and patient survival in non-small-cell lung cancer. BMC Cancer 2022, 22, 1001. [Google Scholar] [CrossRef] [PubMed]
- Fu, H.; Mi, W.; Pan, B.; Guo, Y.; Li, J.; Xu, R.; Zheng, J.; Zou, C.; Zhang, T.; Liang, Z.; et al. Automatic Pancreatic Ductal Adenocarcinoma Detection in Whole Slide Images Using Deep Convolutional Neural Networks. Front. Oncol. 2021, 11, 665929. [Google Scholar] [CrossRef] [PubMed]
- Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.Y. LightGBM: A Highly Efficient Gradient Boosting Decision Tree. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R., Eds.; Curran Associates, Inc.: New York, NY, USA, 2017; Volume 30. [Google Scholar]
- Ma, B.; Guo, Y.; Hu, W.; Yuan, F.; Zhu, Z.; Yu, Y.; Zou, H. Artificial Intelligence-Based Multiclass Classification of Benign or Malignant Mucosal Lesions of the Stomach. Front. Pharmacol. 2020, 11, 572372. [Google Scholar] [CrossRef]
- Yan, R.; Yang, Z.; Li, J.; Zheng, C.; Zhang, F. Divide-and-Attention Network for HE-Stained Pathological Image Classification. Biology 2022, 11, 982. [Google Scholar] [CrossRef]
- Yan, R.; Ren, F.; Li, J.; Rao, X.; Lv, Z.; Zheng, C.; Zhang, F. Nuclei-Guided Network for Breast Cancer Grading in HE-Stained Pathological Images. Sensors 2022, 22, 4061. [Google Scholar] [CrossRef]
- Grist, J.T.; Withey, S.; MacPherson, L.; Oates, A.; Powell, S.; Novak, J.; Abernethy, L.; Pizer, B.; Grundy, R.; Bailey, S.; et al. Distinguishing between paediatric brain tumour types using multi-parametric magnetic resonance imaging and machine learning: A multi-site study. arXiv 2019, arXiv:1910.09247. [Google Scholar] [CrossRef]
- Attallah, O. MB-AI-His: Histopathological Diagnosis of Pediatric Medulloblastoma and its Subtypes via AI. Diagnostics 2021, 11, 359. [Google Scholar] [CrossRef] [PubMed]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861. [Google Scholar] [CrossRef]
- Attallah, O. CoMB-Deep: Composite Deep Learning-Based Pipeline for Classifying Childhood Medulloblastoma and Its Classes. Front. Neuroinform. 2021, 15, 663592. [Google Scholar] [CrossRef]
- Wright, J.R., Jr.; Albert, C. Broders, tumor grading, and the origin of the long road to personalized cancer care. Cancer Med. 2020, 9, 4490–4494. [Google Scholar] [CrossRef]
- Henry, N.L.; Hayes, D.F. Cancer biomarkers. Mol. Oncol. 2012, 6, 140–146, Personalized cancer medicine. [Google Scholar] [CrossRef] [Green Version]
- Kos, Z.; Dabbs, D.J. Biomarker assessment and molecular testing for prognostication in breast cancer. Histopathology 2016, 68, 70–85. [Google Scholar] [CrossRef] [PubMed]
Tissue | Tissue type | Yang et al. (2021) [18] | Yu et.al (2020) [26] |
Hameed et al. (2020) [21] | Cheng et al. (2022) [29] | ||
Farahani et al. (2022) [22] | Sarker et al. (2023) [23] | ||
Luo et al. (2022) [25] | Khan et al. (2023) [20] | ||
Hameed et al. (2022) [24] | Steinbuss et al. (2021) [41] | ||
Le Page et al. (2021) [45] | Zormpas-Petridis et al. (2021) [46] | ||
Abdolahi et al. (2020) [48] | Yang et al. (2022) [47] | ||
Abdeltawab et al. (2022) [43] | Sadhwani et al. (2021) [49] | ||
Wu et al. (2021) [51] | Jin et.al (2021) [52] | ||
Anand et al. (2020) [53] | Dong et al. (2022) [55] | ||
Mi et al. (2021) [58] | Fu et al. (2021) [61] | ||
Ma et al. (2020) [63] | Attallah (2021) [69] | ||
Yan et al. (2022) [64] | Attallah (2021) [67] | ||
Tissue grading | Yu et.al (2020) [26] | Mundhada et al. (2023) [31] | |
Wu et al. (2021) [51] | Yan et al. (2022) [65] | ||
Panigrahi et al. (2022) [42] | |||
Biomarkers | Abousamra et al. (2022) [14] | Liu et al. (2020) [35] | Baid et al. (2022) [38] |
Shovon et al. (2022) [36] | Huang et al. (2021) [40] | Wang et al. (2021) [44] | |
Anand et al. (2020) [53] | Raczkowski et al. (2022) [60] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petríková, D.; Cimrák, I. Survey of Recent Deep Neural Networks with Strong Annotated Supervision in Histopathology. Computation 2023, 11, 81. https://doi.org/10.3390/computation11040081
Petríková D, Cimrák I. Survey of Recent Deep Neural Networks with Strong Annotated Supervision in Histopathology. Computation. 2023; 11(4):81. https://doi.org/10.3390/computation11040081
Chicago/Turabian StylePetríková, Dominika, and Ivan Cimrák. 2023. "Survey of Recent Deep Neural Networks with Strong Annotated Supervision in Histopathology" Computation 11, no. 4: 81. https://doi.org/10.3390/computation11040081
APA StylePetríková, D., & Cimrák, I. (2023). Survey of Recent Deep Neural Networks with Strong Annotated Supervision in Histopathology. Computation, 11(4), 81. https://doi.org/10.3390/computation11040081