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Abstract: Deep learning (DL) and convolutional neural networks (CNNs) have achieved state-
of-the-art performance in many medical image analysis tasks. Histopathological images contain
valuable information that can be used to diagnose diseases and create treatment plans. Therefore,
the application of DL for the classification of histological images is a rapidly expanding field of
research. The popularity of CNNs has led to a rapid growth in the number of works related to
CNNs in histopathology. This paper aims to provide a clear overview for better navigation. In this
paper, recent DL-based classification studies in histopathology using strongly annotated data have
been reviewed. All the works have been categorized from two points of view. First, the studies
have been categorized into three groups according to the training approach and model construction:
1. fine-tuning of pre-trained networks for one-stage classification, 2. training networks from scratch
for one-stage classification, and 3. multi-stage classification. Second, the papers summarized in this
study cover a wide range of applications (e.g., breast, lung, colon, brain, kidney). To help navigate
through the studies, the classification of reviewed works into tissue classification, tissue grading, and
biomarker identification was used.

Keywords: classification; convolutional neural networks; deep learning; digital pathology; histology
image analysis

1. Introduction

Traditionally, pathology diagnosis has been performed by a human pathologist ob-
serving stained specimens from tumors on glass slides using a microscope to diagnose
cancer. In recent years, deep learning has rapidly developed, and more and more entire
tissue slides are being captured digitally by scanners and saved as whole slide images
(WSIs) [1]. Since a large amount of WSIs are being digitized, it is only natural that many
attempts have been made to explore the potential of deep learning on histopathological
image analysis. Histological images and tasks have unique characteristics, and specific
processing techniques are often required [2]. The authors in [3] carried out an extensive
and comprehensive overview of deep neural network models developed in the context
of computational histopathology image analysis. Their survey covers the period up to
December 2019. Since the volume of research in this domain is rapidly growing, the aim of
this review is to complement their overview with papers published since 2020. In contrast
to their survey, the focus of this review is on a specific area of supervised learning only,
namely classification using strongly annotated data.

The rest of this paper is organized as follows. In Section 2, a basic overview of neural
networks used in the context of computational histopathology is presented. Section 3 dis-
cusses in detail supervised deep learning models and approaches used in digital pathology
for classification tasks. These approaches have been grouped into three main categories:
one-stage classification using fine-tuning, one-stage classification training models from
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scratch, and the multi-stage classification approach. In Section 4, we discuss the histopatho-
logical point of view by classifying the methods according to their area of application. In
Section 5, we conclude the paper.

2. Materials and Methods—Convolutional Neural Network

For this survey, only papers that performed classification of histological images with
common convolutional neural network models and used strongly annotated datasets were
selected. Other articles that used more complex deep learning models or weak annotations
were not included in this review. The review was carried out by searching mostly through
PubMed and also arXiv for articles containing deep learning (DL) keywords such as
“convolutional neural networks”, “classification”, “deep learning”, and histology keywords
such as “hematoxylin and eosin”, “H&E”, and “histopathology” in the title or abstract.
To narrow down the selection, combinations of deep learning keywords with histology
keywords were used, for example, “CNN hematoxylin and eosin”. The combination “deep
learning histopathology” was omitted since both words are too general. Moreover, only
articles published since 2020 have been searched. The subsequent filtering process can be
described in four steps. The first two steps were designed to quickly filter out articles that
were obviously irrelevant to the topic of this review and thus reduce as much as possible
the number of articles that needed to be analyzed in more detail in the remaining two
steps. In the first step, articles were filtered based on the title. Papers that were obviously
not related to CNN’s application for histological image data classification were excluded.
This resulted in approximately 700 papers. Articles that could not be unambiguously
excluded based on the title were filtered in a second step based on reading the abstract. In
the third step, the introduction was analyzed. The main purpose was to exclude studies
that did not meet the criteria of this review, such as papers using more complex deep
learning approaches than convolutional neural networks or datasets not only consisting
of histological images. In the last step, approximately 100 articles were fully read. This
part was mainly focused on filtering out studies that only worked with strongly annotated
datasets. We also included some papers that were missing from the initial search but were
cross-referenced in selected articles.

The purpose of this chapter is to explain the concepts and models of deep neural
networks (DNNs) used for classification tasks in digital pathology. Machine learning is a
type of artificial intelligence that allows computers to learn and modify their behavior based
on training data [4]. Supervised learning methods are the most commonly used, where the
dataset consists of input features and corresponding labels. In the case of classification,
the label represents one of a fixed number of classes. The algorithm learns patterns and
connections in the data to find a suitable function that maps inputs to outputs, creating a
model that captures hidden properties in the data and can be used to predict outputs for
new inputs. Training a model involves finding the best model parameters that predict the
data based on a defined loss function [5,6].

Neural networks are the foundation of most DNN algorithms, consisting of intercon-
nected units called neurons organized into layers, including input, hidden, and output
layers. DNNs have multiple hidden layers. A neuron’s output, or activation, is a linear
combination of its inputs and parameters (weights and bias) transformed by an activation
function. Common activation functions in neural networks include sigmoid, hyperbolic tan-
gent, and ReLU functions. At the final output layer, activations are mapped to a distribution
over classes using the softmax function [6,7].

One of the most popular and commonly used supervised deep learning networks
is CNNs, which are often employed for visual data processing of images and video se-
quences [8–10]. CNNs consist of three types of layers: convolutional layers, pooling layers,
and fully connected layers, as shown in Figure 1. The convolutional layer is the most
significant component of the CNN architecture. It consists of several filters, also called
kernels, which are represented as a grid of discrete values. These values are referred to
as kernel weights and are tuned during the training phase. The convolution operation
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consists of the kernel sliding over the whole image horizontally and vertically. Additionally,
the dot product is calculated between the image and kernel by multiplying corresponding
values and summing up to create a scalar value at each position. In particular, each kernel
is convolved over the input matrix to obtain a feature map. Subsequently, the feature
maps generated by the convolutional operation are sub-sampled in the pooling layer. The
convolution and pooling layers together form a pipeline called feature extraction. Above
all, the fully connected layers combine the features extracted by the previous layers to
perform the final classification task [8,11,12].

Figure 1. Convolutional neural network architecture.

3. Classification of Histopathology Images

This section provides a general overview of recent publications using deep learning
and convolutional neural networks (CNNs) in digital pathology. The focus of this work is
solely on supervised learning tasks applied for the classification of histological images. This
category includes models that perform image-level classification, such as tumor subtype
classification and grading, or use a sliding window approach to identify tissue types. Most
deep learning approaches do not use the whole-slide image (WSI) as input because it
would be computationally expensive (high dimensionality). Instead, they extract small
square patches and assign a label to them. Existing methods can be grouped according to
the level of annotations they employ. Based on the type of annotations used for training,
two subcategories may be identified: the strong-annotations approach (patch-level annota-
tions) and the weak-annotations approach (slide-level annotations) [13]. The first approach
relies on the identification of regions of interest and the detailed localization of tumors
by certified pathologists, while for the latter approach, it is sufficient to assign a specific
class to a whole-slide image. In this work, a survey of the strong-annotations approach
is conducted.

3.1. Strong-Annotations Approach (Patch-Level Annotation)

Referring to patch-level annotations as strong means that all extracted patches have
their own label class. Typically, patch labels are derived from pixel-level annotations.
Manually annotating pixels is very time-consuming and laborious work requiring an
expert approach. For instance, pathologists have to localize and annotate all pixels or cells
in WSI by contouring the whole tumor. This approach is shown in Figure 2. Therefore,
there are currently very few strongly annotated histological images. Besides whole-slide
image classification, pixel-wise/patch-wise predictions with the sliding window method
enable spatial predictions such as localization and detection of cancerous cells/tissue. In
addition, stacking patch predictions next to each other builds a WSI heatmap, so the model
can be considered interpretable. Multiple examples of using CNNs in the problem of patch
classification employ a single-stage approach when the patch is classified using one CNN
architecture. In contrast, several approaches use a multi-stage workflow, where typically
the output of one CNN architecture is fed into another CNN that delivers the final decision.
Of course, even more CNN models can be included in such a workflow that can be labeled
as multi-stage classification. For the one-stage approach, one can differentiate between



Computation 2023, 11, 81 4 of 17

models that have been trained from scratch with artificially initiated weights and models
that use pre-trained CNN architectures on data often not related to the original problem.
For multi-stage problems, such differentiation becomes difficult due to many possibilities,
since some CNNs from the multi-stage workflow may be trained from scratch, while others
may be pre-trained. In Figure 3, the top graphic shows the categorization of CNN methods
used in this section.

Figure 2. Construction of patches from pixel-level annotations of WSI.

Figure 3. Methods: Categorization of CNN methods used in Section 3. Application: Categorization
of application areas used in Section 4.

3.2. Fine-Tuning

The easiest way of training CNNs with a limited amount of data is using one of the well-
known pre-trained architectures. Typically, models are initialized using weights pre-trained
on ImageNet and fine-tuned on histopathological images. Papers using this approach are
summarized in Table 1. In [14], the authors fine-tuned VGGNet [15], ResNet [16], and
InceptionV4 [17] models to obtain the probabilities of small patches (100 × 100 pixels),
being tumor-infiltrating lymphocyte (TIL)-positive or TIL-negative extracted from WSIs
of 23 cancer types. For the region classification performance, they extracted bigger super-
patches (800 × 800 pixels) and annotated them with three categories (Low TIL, Medium
TIL, or High TIL) based on the ratio of TIL-positive area. To obtain a prediction of the
category, super-patches were divided into an 8x8 grid and each square (100 × 100 pixel
patch) was classified as TIL-positive or TIL-negative. Subsequently, the correlation between
the score of CNN (number of positive patches in super-patch) and pathologists’ annotations
was observed. In [18], they developed a deep learning-based six-type classifier for the
identification of a wider spectrum of lung lesions including lung cancer. Furthermore,
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they also included pulmonary tuberculosis and organizing pneumonia, which often needs
to be surgically inspected to be differentiated from cancer. EfficientNet [19] and ResNet
were employed to carry out patch-level classification. To aggregate patch predictions into
slide-level classification, two methods were compared: majority voting and mean pooling.
Moreover, two-stage aggregation was implemented to prioritize cancer tissues in slides.

In [20], scholars proposed three steps to develop an AI-based screening method for
lymph node metastases. First, they trained a segmentation model to obtain lymph node
tissue from WSI and broke it into patches. Next, they used a fine-tuned Xception model
to classify patches into metastasis-positive/negative. Finally, the absence or presence of
two connected patches classified as positive determined the final result of WSI. In [21], the
authors compared the accuracies of stand-alone VGG-16 and VGG-19 models with ensemble
models consisting of both architectures in classifying breast cancer histopathological images
as carcinoma and non-carcinoma. In [22], the authors compared the performance of
the VGG19 architecture with methods used in supervised learning with weakly labeled
data to classify ovarian carcinoma histotype. The problem of binary classification into
benign and malignant lesions, with subsequent division into eight subtypes with modified
EfficientNetV2 architecture on images from the BreakHis dataset, was addressed by the
authors in [23]. Similarly, Xception was employed in [24] for subtyping breast cancer into
four categories. The binary subtype classification of eyelid carcinoma was performed
in [25]. They used DenseNet-161 to make predictions for every patch in WSI and then used
a patch voting strategy to decide the WSI subtype. In [26], the authors used AlexNet [27],
GoogLeNet [28], and VGG-16 to detect histopathology images with cancer cells and to
classify ovarian cancer grade. Since neural networks behave like black-box models, the
authors employed the Grad-CAM method to demonstrate that CNN models attended to
the cancer cell organization patterns when differentiating histopathology tumor images
of different grades. Grad-CAM was also employed in [29], where the authors used this
method to provide interpretability and approximate visual diagnosis for the presentation of
the model’s results to pathologists. The model consisted of three neural networks fine-tuned
on a custom dataset to classify H&E stained tissue patches into five types of liver lesions,
cirrhosis, and nearly normal tissue. A decision algorithm consisting of three networks was
also proposed in [30] to detect odontogenic cyst recurrence using binary classifiers. The
procedure consisted of letting the first two models make predictions. If the predictions
did not match, a third model was loaded to obtain the final decision. Another example of
using Grad-CAM is [31] to visualize classification results of the VGG16 network in grading
bladder non-invasive carcinoma.

Hematoxylin-eosin (H&E) is considered as the gold standard for evaluating many
cancer types. However, it contains only basic morphological information. In clinical
practice, to obtain molecular information, immunohistochemical (IHC) staining is often
employed. Such staining can visualize the expressions of different proteins (e.g., Ki67) on
the cell membrane or nucleus. This approach is referred to as double staining. Many recent
studies have shown that there is a correlation between H&E and IHC staining [32–34].

In [35], the authors addressed the problem of double staining in determining the
number of Ki67-positive cells for cancer treatment. They employed matching pairs of IHC-
and H&E-stained images and fine-tuned ResNet-18 at the cell-level from H&E images.
Subsequently, to create a heat map, they transformed the CNN into a fully convolutional
network without fully connected layers. As a result, the fine-tuned ResNet-18 was able to
handle WSI as input and produce a heat map as output.

In [36], the authors proposed a modified Xception network called HE-HER2Net by
adding global average pooling, batch normalization layers, dropout layers, and dense
layers with a Swish activation function. The network was designed to classify H&E images
into four categories based on Human epidermal growth factor receptor 2 (HER2) positivity
from 0 to 3+. In addition to routine model evaluation, the authors compared their modified
network to other existing architectures and claimed that HE-HER2Net surpassed all existing
models in terms of accuracy, precision, recall, and AUC score.
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To produce accurate models capable of generalization, it is essential to obtain large
amounts of diversified data. Typically, this problem is addressed by pooling all necessary
data to a centralized location. However, due to the nature of medical data, this approach
has many obstacles regarding privacy and data ownership, as well as various regulatory
policies (e.g., the General Data Protection Regulation GDPR of the European Union [37]).
The authors of [38] simulated a Federated Learning (FL) environment to train a deep
learning model that classifies cells and nuclei to identify TILs in WSI. They generated a
dataset from WSIs of cancer from 12 anatomical sites and partitioned it into eight different
nodes. To evaluate the performance of FL, they also trained a CNN using a centralized
approach and compared the results. The study shows that the FL approach achieves similar
performance to the model trained with data pooled at a centralized location.

Table 1. Summary of fine-tuning papers.

Reference Cancer Types Staining Dataset Neural Networks
in Models Method

Abousamra et al.
(2022) [14] 23 cancer types H&E The Cancer Genome

Atlas (TCGA)
Vgg-16, ResNet-34,

InceptionV4
Patch-level classification of Tumor

infiltrating lymphocytes (TIL)

Yang et al.
(2021) [18] Lung cancer H&E

Custom dataset of 1271
WSIs and 422 WSIs

from TCGA

ResNet-50,
EfficientNet-B5

Six-type classification of lung lesions
including pulmonary tuberculosis and

Organizing pneumonia

Hameed et al.
(2020) [21] Breast cancer H&E Custom dataset of

544 WSIs VGG-16, VGG-19
Ensemble of neural networks to classify

carcinoma and
non-carcinoma images

Yu et.al (2020) [26] Ovarian cancer H&E TCGA AlexNet, GoogLeNet,
VGG-16

Cancerous regions identification and
grades classification

Liu et al. (2020) [35] Different types
of cancer H&E, IHC (Ki67) Custom dataset from

300 Regions of interest ResNet-18 Classification of Ki67 positive and
negative cells

Baid et al.
(2022) [38] 12 types H&E TCGA VGG-16 Federated learning for classification of

tumor infiltrating lymphocytes

Cheng et al.
(2022) [29] Liver cancer H&E Custom dataset ResNet50, InceptionV3,

Xception

Ensemble of 3 networks pretrained on
ImageNet used to differentiate

Hepatocellular nodular lesions (5 types)
with nodular cirrhosis and nearly

normal liver tissue

Shovon et al.
(2022) [36] Breast cancer H&E BCI dataset Modified Xception

Four class classification of HER2 with
modified Xception model pretrained on

ImageNet

Rao et al.
(2022) [30] Odontogenic cysts H&E Custom dataset

Inception-V3,
DenseNet-121,

Inception-Resnet-V2

Binary classification of cyst recurrence
based on decision algorithm consisting

of 3 models

Farahani et al.
(2022) [22] Ovarian cancer H&E Custom dataset VGG19

Comparison of classification of ovarian
carcinoma histotype by

four models

Sarker et al.
(2023) [23] Breast cancer H&E BreakHis dataset Modified

EfficientNetV2

Binary classification of malignant and
benign tissue and multi-class subtyping
using fused mobile inverted bottleneck

convolutions and mobile inverted
bottleneck convolutions with dual

squeeze and excitation network and
EfficientNetV2 as backbone

Luo et al.
(2022) [25] Eyelid carcinoma H&E Custom dataset DenseNet161

The differential diagnosis of eyelid basal
cell carcinoma and sebaceous carcinoma

based on patch prediction by the
DenseNet161 architecture and WSI

differentiation by an average-probability
strategy-based integration module

Mundhada et al.
(2023) [31] Bladder cancer H&E Custom dataset VGG16 Grading of non-invasive carcinoma

Khan et al.
(2023) [20]

Breast and colon
cancer H&E PatchCamelyon Xception

Segmentation of lymph node tissue with
subsequent classification to detect

metastases

Hameed et al.
(2022) [24] Breast cancer H&E Colsanitas dataset Xception

Using Xception networks as feature
extractor to classify breast cancer into
four categories: normal tissue, benign

lesion, in situ carcinoma, and
invasive carcinoma
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3.3. Training from Scratch

As already stated, fine-tuning is a promising method for training deep neural networks.
On the other hand, it can only be applied to well-known architectures that are already
pre-trained. When designing a custom CNN architecture, it needs to be trained from
scratch. Table 2 summarizes studies in which neural networks were trained from scratch.
In [39], the authors proposed a method based on CNN with residual blocks (Res-Net)
referred to as DeepLRHE to predict lung cancer recurrence and the risk of metastasis.
Later in [40], scholars established the new DeepIMHL model consisting of CNN and Res-
Net to predict mutated genes as biomarkers for targeted-drug therapy of lung cancer.
In addition, the authors in [41] trained and optimized EfficientNet models on images of
non-Hodgkin lymphoma and evaluated its potential to classify tumor-free reference lymph
nodes, nodal small lymphocytic lymphoma/chronic lymphocytic leukemia, and nodal
diffuse large B-cell lymphoma. In [42], the authors proposed three architectures of ResNet
differing in the construction of residual blocks trained from scratch. Their suggested model
achieved accuracy comparable to other state-of-the-art approaches in the classification
of oral cancer histological images into three stages. To classify kidney cancer subtypes,
in [43] the authors developed an ensemble-pyramidal model consisting of three CNNs that
process images of different sizes. The authors in [44] demonstrated that CNN-based DL can
predict the gBRCA mutation status from H&E-stained WSIs in breast cancer. According
to researchers in [45], CNN can be employed to differentiate non-squamous Non-Small
Cell Lung Cancer versus squamous cell carcinoma. To classify the tumor slide, they pooled
information using the max-pooling strategy. Moreover, they added quality check with a
threshold for predictions to select only tiles with a high prediction level. Additionally, to
improve the prediction, they also used a virtual tissue microarray (circle from the centroid
based on the pathologist’s hand-drawn tumor annotations) instead of WSI.

To compare the performance of pre-trained networks with the custom ones trained
from scratch, researchers in [46] used images of three cancer types: melanoma, breast
cancer, and neuroblastoma. Unlike others using patches, the authors applied the simple
linear iterative clustering (SLIC) to segment images into superpixels which group together
similar neighboring pixels, as shown in Figure 4. Thus, these superpixels were classified
into multiple subtype categories based on the type of cancer. To make WSI-level predictions,
they used multiple specific quantification metrics such as stroma-to-tumor ratio. Although
the custom NN achieved comparable results, pre-trained networks performed better on all
three cancer types. A similar comparison was carried out in [47] for the classification of
subtypes in lung cancer biopsy slides. Results showed that a CNN model built from scratch
fitted to the specific pathological task could produce better performances than fine-tuning
pre-trained CNNs.

A comparison of training from scratch versus transfer learning was performed in [48].
The authors compared three approaches for training the VGG16 network: training from
scratch, transfer learning as a feature extractor, and fine-tuning on images of breast cancer
to detect Invasive Ductal Carcinoma. According to the results, the model trained from
scratch achieved better results in terms of accuracy (0.85). However, using transfer learning,
they were able to train a comparable model (accuracy 0.81) ten times faster. Furthermore,
among the transfer learning approaches, transfer learning via feature extraction (accuracy
0.81), which involved retraining some of the convolutional blocks, yielded better results in
less time compared to transfer learning via fine-tuning (accuracy 0.51).
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Table 2. Summary of papers training neural networks from scratch.

Reference Cancer Types Staining Dataset Neural Networks
in Models Method

Wu et al.
(2020) [39] Lung cancer H&E 211 samples from

TCGA
Custom CNN with

residual blocks Prediction of lung cancer recurrence

Huang et al.
(2021) [40] Lung cancer H&E TCGA Custom CNN with

residual blocks Identification of the bio-markers of lung cancer

Steinbuss et al.
(2021) [41] Blood cancer H&E Custom dataset

from 629 patients EfficientNet
Classification of tumor-free lymph nodes, nodal small

lymphocytic lymphoma/chronic lymphocytic leukemia, and
nodal diffuse large B-cell lymphoma

Panigrahi et al.
(2022) [42] Oral cancer H&E Custom dataset Three ResNet

architectures Classification of 3 grades

Wang et al.
(2021) [44] Breast cancer H&E Custom dataset of

222 images ResNet-18 BRCA gene mutations prediction

Le Page et al.
(2021) [45] Lung cancer H&E

Custom dataset of
197 images and 60

images from TCGA
InceptionV3

Classification of patches (tiles) into cancer subtypes. For final
case classification they used majority-vote method or highest

probability class

Zormpas-
Petridis et al.
(2021) [46]

Melanoma,
breast cancer and

childhood
neuroblastoma

H&E Custom dataset Custom CNN

Classification of the: melanoma (tumor tissue, stroma, cluster of
lymphocytes, normal epidermis, fat, and empty/white space)
breast cancer (tumor, necrosis, stroma, cluster of lymphocytes,
fat, and lumen/empty space) neuroblastoma (undifferentiated

neuroblasts, tissue damage (necrosis/apoptosis), areas of
differentiation, cluster of lymphocytes, hemorrhage, muscle,

kidney, and empty/white space)

Abdolahi et al.
(2020) [48] Breast cancer H&E Kaggle Custom CNN,

VGG-16 Classification of invasive ductal carcinoma

Yang et al.
(2022) [47] Lung cancer H&E Custom dataset Custom CNN Comparison of classification lung cancer by fine-tuned models

and models trained from scratch

Abdeltawab et
al. (2022) [43] Kidney cancer H&E Custom dataset Custom CNN

An ensemble-pyramidal deep learning model consisting of
three CNNs processing different image sizes to differentiate 4

tissue subtypes

Figure 4. WSI image segmentation using the SLIC superpixels algorithm. Reprinted from [46], with
permission according to Creative Commons Attribution License.

3.4. Multi-Stage Classification

In [49], scholars tackled the complex problem of computer-aided disease diagnosis
by designing a two-stage system to determine the Tumor Mutation Burden (TMB) status,
which is an important biomarker for predicting the response to immunotherapy in lung
cancer. For the first stage, they developed a CNN based on InceptionV3 [50] to classify
known histologic features for individual patches across H&E-stained WSIs. In the second
stage, the patch-level CNN predictions were aggregated over the entire slide and combined
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with clinical features such as smoking status, age, stage, and sex to classify the TMB status.
The final model was obtained by ensembling 10 independently trained networks.

In [51], the authors proposed a diagnostic framework for generating a whole-case
report consisting of the detection of renal cancer regions, classification of cancer subtypes,
and cancer grades. From every stain-normalized WSI, patches were selected from tumor
and non-tumor regions to form a dataset. For tumor region classification, they fine-tuned
several different architectures and identified InceptionV3 as the most suitable one. Thus,
they also used this architecture for the remaining tasks. Patches classified as containing a
tumor were further classified into three tumor subtypes and four grade classes.

It should be noted that CNNs have proven to be successful classifiers in the field of
histology. Nevertheless, they can also be employed in conjunction with other machine
learning (ML) classifiers. The authors in [52] developed a CNN model for the automated
classification of pathology glioma (brain tumor) images into six subtypes. The images pass
through the CNN to obtain patch-level output categories. At this point, those patch labels
go through a hierarchical decision tree for patient-level diagnosis based on the amounts
and proportions of tumor types. The outcome thus includes results for both the image
patch-label and the patient-level label. In [53], researchers developed a three-step approach
to HER2 status tissue classification in breast cancer. Firstly, they used a pre-trained UNet-
based nucleus detector [54] to create patches. Secondly, they trained a CNN to identify
tumor nuclei and further classified them as HER2-positive or HER2-negative. In [55],
the authors proposed a classification method for subtype differentiation of liver cancer
based on a stacking classifier with deep neural networks as feature extractors. They used
four pre-trained deep convolutional neural networks, ResNet50, VGG16, DenseNet201 [56],
and InceptionResNetV2 [17], to extract deep features from histopathological images. After
fusing extracted deep features from different architectures, they applied multiple ML
classifiers (Support-vector machines (SVMs), k-Nearest Neighbor (k-NN), Random Forest
(RF)) on the feature vector to obtain final classification.

To predict 5-year overall survival in renal cell carcinoma, scholars in [57] fine-tuned
a ResNet18 pre-trained on the ImageNet dataset. The CNN assigned a probability score
for every patch, and to determine the class for an entire WSI, the scores of all associated
patches were averaged and classified. In addition to single-stage classification, they also
used CNN prediction with other clinicopathological variables for multivariable logistic
regression analysis. The authors in [58] presented an approach that combines a deep
convolutional neural network as a patch-level classifier and XGBoost [59] as a WSI-level
classifier to automatically classify H&E-stained breast digital pathology images into four
classes: normal tissue, benign lesion, ductal carcinoma in situ, and invasive carcinoma.
InceptionV3 was trained as the Patch-Level Classifier to generate four predicted probability
values combined into a heatmap. By comparing the classification accuracy of different
classifiers, they chose XGBoost as the WSI-level classifier.

In [60], researchers trained a deep learning classifier and applied it to classify lung
tumor samples into nine tissue classes. From the extracted features, they computed spatial
features that describe the composition of the tumor microenvironment and used them
in combination with clinical data to predict patient survival, as well as to predict tumor
mutation. The authors of [61] claim that they were the first to propose a method for
detecting Pancreatic ductal adenocarcinoma in WSIs based on CNNs. They employed
InceptionV3 as a patch-level classifier and predicted patches combined with a malignancy
probability heatmap. At this point, statistical features were extracted from WSI heatmaps
and applied to train a Light Gradient Boosting Machine [62] for slide-level classification.
Similar approaches were taken by researchers in [63]. On histological images of gastric
cancer (GC), they made both binary and multi-class classifications. Firstly, InceptionV3 was
used for both malignant and benign patch classification as well as discriminating normal
mucosa, gastritis, and gastric cancer. Secondly, they separated all WSIs into categories,
“complete normal WSIs” and “mixture WSIs” with gastritis or GC, and used 44 features
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extracted from the malignancy probability heatmap generated by CNN to train and fine-
tune the RF classifier.

The addition of attention mechanisms to CNNs for increased performance has become
increasingly popular nowadays. In [64], the Divide-and-Attention Network (DANet) was
proposed for breast cancer classification and grading of both breast and colorectal cancers.
This network has three inputs: the original pathological image, the nuclei image, and the
non-nuclei image. The nuclei and non-nuclei images are obtained as a result of a nuclei
segmentation model. A similar approach was used in [65], where the authors developed
the Nuclei-Guided Network (NGNet) for grading of breast invasive ductal carcinoma.
Compared to DANet, NGNet has only two input images: the original image and the nuclei
image obtained from segmentation.

Medulloblastoma (MB) is a dangerous malignant pediatric brain tumor that can lead to
death [66]. In [67], the authors proposed a mixture of deep learning and machine learning
methods called MB-AI-His for the automatic diagnosis and classification of four subtypes of
pediatric MB. The diagnosis is performed in two levels. The first level classifies the images
into normal and abnormal (binary classification level), while the second level classifies
the abnormal images containing MB tumor into the four subtypes of childhood MB tumor
(multi-classification level). Three pre-trained deep CNNs are utilized with transfer learning
(ResNet-50, DenseNet-201, and MobileNet [68]) to extract spatial features. These features
are combined with time-frequency features extracted using the discrete wavelet transform
(DWT) method. Finally, a combination of spatial features and five popular classifiers is
used to perform multi-class classification, including SVM, k-NN, Linear Discriminant
Analysis, and Ensemble Subspace Discriminant. A similar approach is introduced by the
authors in [69]. Multi-class classification of the four classes of childhood MB is much
more complicated than binary classification. Few research articles have investigated this
multi-class classification problem. Their pipeline consists of spatial DL feature extraction
from 10 fine-tuned CNN architectures, feature fusion and reduction using the DWT method,
and subsequent selection of features. Classification is accomplished using a bidirectional
Long-Short-Term Memory classifier. All papers using multistage classification are listed in
Table 3.

Table 3. Summary of studies using multi-stage classification.

Reference Cancer Types Staining Dataset Neural Networks in Models Method

Sadhwani et al.
(2021) [49] Lung cancer H&E TCGA and custom

dataset of 50 WSIs Custom CNN Multiclassification into subtypes and binary
classification of Tumor Mutation Burden

Wu et al. (2021) [51] Renal cell cancer
(RCC) H&E

667 WSIs from
TCGA + new RCC
dataset of 632 WSIs

InceptionV3
Identification of tumor regions and

classification into tumor subtypes and
different grades

Jin et.al (2021) [52] Brain cancer H&E

slides of 323
patients from the
Central Nervous
System Disease

Biobank

custom CNN based on
DenseNet Classification into 5 subtypes of glioma

Anand et al. (2020) [53] Breast cancer H&E, IHC

dataset from
University of
Warwick and

TCGA

Custom neural network
Identification of tumor patches and
classification of HER2 into positive

or negative

Dong et al. (2022) [55] Liver cancer H&E Custom dataset of
73 images

ResNet-50, VGG-16,
DenseNet-201,

InceptionResNetV2
Classification of three differentiation states

Mi et al. (2021) [58] Breast cancer H&E Custom dataset of
540 WSIs InceptionV3

Multi-class classification of normal tissue,
benign lesion, ductal carcinoma in situ, and

invasive carcinoma

Fu et al. (2021) [61] Pancreas H&E Custom dataset of
231 WSIs InceptionV3 Classification of patches into cancerous or

normal

Ma et al. (2020) [63] Gastric cancer H&E Custom dataset of
763 WSIs InceptionV3 Classification of normal mucosa, chronic

gastritis, and intestinal-type
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Table 3. Cont.

Attallah (2021) [67] Brain cancer H&E Custom dataset of
204 images

ResNet-50, DenseNet-201,
MobileNet

Classification of normal and abnormal
Medulloblastoma

Attallah (2021) [69] Brain cancer H&E Custom dataset of
204 images 10 CNN architectures Multi-class classification of 4

medulloblastoma subtypes

Yan et al. (2022) [64] Breast and
colorectal cancer H&E

BACH dataset and
datasets avaiable

from different
articles

Xception

Classification of breast cancer, colorectal and
breast cancer grading based on

Divide-and-Attention Network using
Xception CNN as backbone

Yan et al. (2022) [65] Breast cancer H&E Custom dataset NGNet

Grading of breast cancer using attention
modules and segmentation. Classification is
done with two images: original image and

corresponding nuclei image)

Raczkowski et al.
(2022) [60] Lung cancer H&E Custom dataset ARA-CNN

Classification of mutation based on tissue
prevalence and tumor microenvironment
composition computed from ARA-CNN

output. CNN was used to classify patches
into 9 tissue subtypes

Wessels et al. (2022) [57] Kidney cancer H&E TCGA ResNet18

Pretrained ResNet18 CNN was used to
predict 5-year overal survival in renal cell
carcinoma. Furthermore, the CNN-based

classification was an independent predictor
in a multivariable clinicopathological model

4. Discussion

Based on the studies described in the previous chapter, it is clear that there are many
approaches to successfully use neural networks for many classification tasks in histology
and a variety of cancer types. Most commonly, DL has been applied to lung and breast
cancer. Breast cancer is a leading cause of cancer-related deaths in women worldwide, and
lung cancer was the second most commonly diagnosed cancer worldwide in 2020, behind
female breast cancer [24,47]. From a histological point of view, the tasks in which neural
networks were successfully applied have been divided into the following three groups:
tissue types, grading, and biomarker classification. The articles mentioned in this review
are arranged according to this categorization in Table 4.

Table 4. Overview of all studies classified according to the application area.

Tissue

Tissue type

Yang et al. (2021) [18] Yu et.al (2020) [26]
Hameed et al. (2020) [21] Cheng et al. (2022) [29]
Farahani et al. (2022) [22] Sarker et al. (2023) [23]

Luo et al. (2022) [25] Khan et al. (2023) [20]
Hameed et al. (2022) [24] Steinbuss et al. (2021) [41]
Le Page et al. (2021) [45] Zormpas-Petridis et al. (2021) [46]

Abdolahi et al. (2020) [48] Yang et al. (2022) [47]
Abdeltawab et al. (2022) [43] Sadhwani et al. (2021) [49]

Wu et al. (2021) [51] Jin et.al (2021) [52]
Anand et al. (2020) [53] Dong et al. (2022) [55]

Mi et al. (2021) [58] Fu et al. (2021) [61]
Ma et al. (2020) [63] Attallah (2021) [69]
Yan et al. (2022) [64] Attallah (2021) [67]

Tissue grading Yu et.al (2020) [26] Mundhada et al. (2023) [31]
Wu et al. (2021) [51] Yan et al. (2022) [65]

Panigrahi et al. (2022) [42]

Biomarkers
Abousamra et al. (2022) [14] Liu et al. (2020) [35] Baid et al. (2022) [38]

Shovon et al. (2022) [36] Huang et al. (2021) [40] Wang et al. (2021) [44]
Anand et al. (2020) [53] Raczkowski et al. (2022) [60]

4.1. Tissue Types

One of the most fundamental tasks in histology is the classification of tissue types. It
is possible to look at this task in two ways. The first aspect and the complete basis is to
identify tumor tissue and other tissue types. This may involve a binary division into tumor
and non-tumor tissue (this approach was used in [21]) as well as multi-class detection of
tumor, stroma, lymphocytes, fat, necrosis, and other. In [46], the authors demonstrated that
their proposed SuperHistopath framework succeeded in tissue multi-classification of three
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different cancer types and was able to achieve high accuracy (98.8% in melanomas, 93.1%
in breast cancer, and 98.3% in childhood neuroblastoma).

The second aspect is classifying tumor tissue into cancer subtypes. This could be
the classification of malign vs. benign carcinoma, invasive vs. non-invasive carcinoma,
or various subtypes of a certain cancer type. This subtyping is an important part of
determining a treatment plan; however, it often needs special IHC staining to be done.
Therefore, the ability to perform subtype classification directly from H&E images could
be of great benefit in terms of clinical application. Authors in [23] proposed a method
for subdividing breast cancer into eight subtypes, four for benign (adenosis, fibroade-
noma, phyllodes tumour, and tubular adenoma) and four for malignant (carcinoma, lob-
ular carcinoma, mucinous carcinoma, and papillary carcinoma). They showed that their
model achieved significant results compared to other state-of-the-art models mentioned in
the study.

It should be noted that the two approaches are not always clearly separable, and the
classification of tissue type is often associated with the classification of tumor subtypes.
This approach was demonstrated in [24], where the breast tissue was categorized as normal
tissue, benign lesion, in situ carcinoma, or invasive carcinoma. Another example is [29],
where researchers managed to obtain models with accuracy over 0.95% in classifying
five types of liver lesions, cirrhosis, and nearly normal tissue.

4.2. Tissue Grading

Cancer grading has its origins in 1914 when pathologist Albert Broders began col-
lecting data showing that cancers of the same histologic type behaved differently. By
the late 1930s, tumor grading was considered a state-of-the-art prognostic technique for
scientific cancer care. Today, there are hundreds of grading schemes for various types
of cancer [70]. However, in comparison with subtype classification, pathological image
grading is considered a fine-grained task [64,65].

Researchers in [42] used residual networks to grade images of squamous cell carci-
noma, since it accounts for about 90% of oral disorders. To demonstrate the deep learning
capability of grading different cancer types, the authors of [64] developed a model with an
average classification accuracy of 95% and 91% for colorectal and breast cancer grading,
respectively. The breast cancer grading task was also addressed in [65].

4.3. Bio-Marker Classification

A bio-marker is a biological molecule found in tissues that is a sign of a normal or
abnormal process or of a condition or disease, such as cancer. Typically, bio-markers
differentiate a person without disease from an affected patient. There is a tremendous
variety of bio-markers, including proteins, antibodies, nucleic acids, gene expression, and
others. They can be used in clinical treatment for multiple tasks, such as estimating the risk
of disease, differential diagnosis, predicting response to therapy, determining the prognosis
of the disease, and so on [71].

In [36], the authors presented the architecture HE-HER2Net, which surpassed the
accuracy of other common architectures in the multiclassification of HER2 into four cate-
gories. Following this, researchers in [40] developed a CNN to predict the mutated genes,
which are potential candidates for targeted-drug therapy for lung cancer. The average
probability of the bio-markers of lung cancer was received through the model, with the
highest accuracy of 86.3%.

Ki67 is a protein that is found in the cancer cell nucleus and can be found only in
cells that are actively growing and dividing, which is typical for cells mutated into cancer.
Therefore, Ki67 is sometimes considered a good marker of proliferation (rapid increase in
the number of cells) [72]. In [35], scholars fine-tuned an NN to classify cell images into
Ki67-positive, Ki67-negative, and as a background image with an accuracy of 93%.
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5. Conclusions

The article presents a detailed survey of recent DL models based on neural networks
in the context of classification tasks for the analysis of histological images. The analysis of
approximately 70 articles published in the last three years shows that automated processing
and classification of histopathological images by deep learning methods have been applied
to a wide range of histological tasks, such as tumor tissue classification or biomarker
evaluation to determine treatment plans. The survey reveals several conclusions:

Application Areas: Deep learning has been applied to several types of cancer (e.g., breast,
lung, colon, brain, kidney) and has proven to be capable of assisting pathologists with
visual tasks in the treatment of various diseases. The reviewed works have identified the
following three groups of specific tasks: classification of tissue type, grading of specific
tissue, and identification of the presence of biomarkers.
Single- and Multi-Stage Approaches: Convolutional neural networks can be applied
either as a stand-alone classifier or can be used as a feature extractor whose outputs will
proceed into another machine learning model to carry out the final classification.
Pre-Training: Training networks from scratch requires a large dataset and a lot of com-
puting time. Therefore, it is recommended to experiment with well-known architectures
pre-trained on ImageNet. If the results are not sufficient, then one can design their own
custom network and train it from scratch.
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AI Artificial Intelligence
AUC Area Under Curve
BCI Breast Cancer Immunohistochemical
DL Deep Learning
CNNs Convolutional Neural Networks
WSIs Whole Slide Images
NNs Neural Networks
TIL Tumor Infiltrating Lymphocytes
H&E Hematoxylin and Eosin
IHC Immunohistochemical
FL Federated Learning
GDPR General Data Protection Regulation
SLIC Simple Linear Iterative Clustering
TMB Tumor Mutation Burden
ML Machine Learning
HER2 Human Epidermal Growth Factor Receptor 2
SVM Support-vector machines
k-NN k-Nearest Neighbor
RF Random Forest
GC Gastric Cancer
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DWT Discrete Wavelet Transform
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