Nonparametric Estimation of Range Value at Risk
Abstract
:1. Introduction
Definitions
2. Nonparametric RVaR Estimators
2.1. Empirical Estimator
2.2. Brazauskas et al.’s Estimator [20]
2.3. Kernel Estimator
2.4. Tail-Trimmed Estimator
2.5. Yamai and Yoshiba’s Estimator [29]
2.6. Filtered Historical Method
3. Simulation
- (i)
- is an i.i.d. process, marginal distribution GPD with .
- (ii)
- is an i.i.d. process, marginal distribution Student’s t-test with 4 df.
- (iii)
- is an i.i.d. process, marginal distribution N(0,1).
- There is no estimator that consistently outperforms the others. However, there are some circumstances in which some of these estimators perform well.
- GPD → We observe that for (, ) and , outperforms all the estimators. For (, ) and , outperforms all the estimators. For (, ) and , outperforms all the estimators. For (, ) and , outperforms all the estimators. Again for and (, ), (, ) and (, ), outperforms all the estimators. For (30, , ), outperforms all the estimator and for (1000, , ), outperforms all the estimator.
- N(0, 1) → We observe that outperforms all estimators for all possible combinations of (n, p, q) except in few cases where the difference is very small. We also observe that for and for all values of (p, q), outperforms the . For and (, ), outperforms all the estimators. For (1000, , ), also outperforms all the estimators.
- Student’s t-test → We observe that for (30, , ), (30, , ) and (30, , ), outperforms all the estimators. For (, ) and , outperforms all the estimators and for , outperforms all the estimators. For (, ) and , outperforms all the estimators. For (, ) and , outperforms all the estimators. For and (, ), (, ), outperforms all the estimators. For and (, ), (, ), outperforms all the estimators. Furthermore, we observe that for all values of (n, p, q), outperforms the .
- ARMA → We observe that outperforms all the estimators for all possible combinations of (n, p, q) except for a few cases where the difference is very small. We also observe that outperforms the for all possible combinations of (n, p, q) except (250, , ) and the outperforms the when and for all possible combinations of (p, q) except (, ) for the ARMA model (, ). For and and for all possible combinations of (p, q), outperforms the for the ARMA model (, ).
Findings from Table
4. Backtesting
4.1. Significance
- For all i and , we simulate from , where M is the number of simulations.
- For every m, we compute the value of .
- The p-value needs to be calculated as , where denotes the observed value of Z.
- The null hypothesis is rejected if the p-value is smaller than the p level.
4.2. Simulation Study
5. Summary and Discussions
5.1. Summary of Main Results
5.2. Implications from Our Study
5.3. Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Philippe, J. Value at Risk: The New Benchmark for Managing Financial Risk; McGraw-Hill Professional: New York, NY, USA, 2001. [Google Scholar]
- Embrechts, P.; Liu, H.; Wang, R. Quantile-Based Risk Sharing. Oper. Res. 2018, 66, 936–949. [Google Scholar] [CrossRef]
- Embrechts, P.; Wang, B.; Wang, R. Aggregation-robustness and model uncertainty of regulatory risk measures. Financ. Stoch. 2015, 19, 763–790. [Google Scholar] [CrossRef]
- Emmer, S.; Kratz, M.; Tasche, D. What is the best risk measure in practice? A comparison of standard measures. J. Risk 2015, 18, 31–60. [Google Scholar] [CrossRef]
- Cont, R.; Deguest, R.; Scandolo, G. Robustness and sensitivity analysis of risk measurement procedures. Quant. Financ. 2010, 10, 593–606. [Google Scholar] [CrossRef]
- Jadhav, D.; Ramanathan, T.V.; Naik-Nimbalkar, U.V. Modified expected shortfall: A new robust coherent risk measure. J. Risk 2013, 16, 69–83. [Google Scholar] [CrossRef]
- Embrechts, P.; Liu, H.; Mao, T.; Wang, R. Quantile-based risk sharing with heterogeneous beliefs. Math. Program. 2020, 181, 319–347. [Google Scholar] [CrossRef]
- Barendse, S. Efficiently Weighted Estimation of Tail and Interquantile Expectations. 2020. Available online: https://dx.doi.org/10.2139/ssrn.2937665 (accessed on 20 December 2022).
- Lugosi, G.; Shahar, M. Robust multivariate mean estimation: The optimality of trimmed mean. Ann. Stat. 2021, 49, 393–410. [Google Scholar] [CrossRef]
- Fissler, T.; Ziegel, J.F. On the elicitability of range value at risk. Stat. Risk Model. 2021, 38, 25–46. [Google Scholar] [CrossRef]
- Scheller, F.; Auer, B.R. How does the choice of Value-at-Risk estimator influence asset allocation decisions? Quant. Financ. 2018, 18, 2005–2022. [Google Scholar] [CrossRef]
- McNeil, A.J.; Frey, R. Estimation of tail-related risk measures for heteroscedastic financial time series: An extreme value approach. J. Empir. Financ. 2000, 7, 271–300. [Google Scholar] [CrossRef]
- Abad, P.; Benito, S.; López, C. A comprehensive review of Value at Risk methodologies. Span. Rev. Financ. Econ. 2014, 12, 15–32. [Google Scholar] [CrossRef]
- Dutta, S.; Biswas, S. Extreme quantile estimation based on financial time series. Commun. Stat. Simul. Comput. 2017, 46, 4226–4243. [Google Scholar] [CrossRef]
- Nadarajah, S.; Zhang, B.; Chan, S. Estimation methods for expected shortfall. Quant. Financ. 2014, 14, 271–291. [Google Scholar] [CrossRef]
- Dutta, S.; Biswas, S. Nonparametric estimation of 100(1-p)% expected shortfall: p→0 as sample size is increased. Commun. Stat. Simul. Comput. 2018, 47, 338–353. [Google Scholar] [CrossRef]
- Broda, S.A.; Paolella, M.S. Expected shortfall for distributions in finance. In Statistical Tools for Finance and Insurance; Cizek, P., Härdle, W.K., Weron, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 57–99. [Google Scholar]
- Van der Vaart, A.W. Asymptotic Statistics; Cambridge University Press: Cambridge, UK, 2000; Volume 3. [Google Scholar]
- Chen, S.X. Nonparametric Estimation of Expected Shortfall. J. Financ. Econ. 2007, 6, 87–107. [Google Scholar] [CrossRef]
- Brazauskas, V.; Jones, B.L.; Puri, M.L.; Zitikis, R. Estimating conditional tail expectation with actuarial applications in view. J. Stat. Plan. Inference 2008, 138, 3590–3604. [Google Scholar] [CrossRef]
- Yu, K.; Ally, A.K.; Yang, S.; Hand, D.J. Kernel quantile-based estimation of expected shortfall. J. Risk 2010, 12, 15–32. [Google Scholar]
- Bouaddi, M.; Moutanabbir, K. Kernel Estimation of the Expected Shortfall for Dependent Financial Losses. ResearchGate 2022, preprint. [Google Scholar]
- Azzalini, A. A Note on the estimation of a distribution function and quantiles by a Kernel method. Biometrika 1981, 68, 326–328. [Google Scholar] [CrossRef]
- Bowman, A.; Hall, P.; Prvan, T. Bandwidth selection for the smoothing of distribution functions. Biometrika 1998, 85, 799–808. [Google Scholar] [CrossRef]
- Chen, S.X.; Tang, C.Y. Nonparametric inference of value-at-risk for dependent financial returns. J. Financ. Econ. 2005, 3, 227–255. [Google Scholar] [CrossRef]
- Altman, N.; Léger, C. Bandwidth selection for kernel distribution function estimation. J. Stat. Plan. Inference 1995, 46, 195–214. [Google Scholar] [CrossRef] [Green Version]
- Biswas, S.; Sen, R. Kernel based estimation of spectral risk measures. arXiv 2019, arXiv:1903.03304v3. [Google Scholar]
- Hill, J.B. Expected Shortfall Estimation and Gaussian Inference for Infinite Variance Time Series. J. Financ. Econ. 2015, 13, 1–44. [Google Scholar] [CrossRef]
- Yamai, Y.; Yoshiba, T. Comparative analysis of expected shortfall and value-at-risk: Their estimation error, decomposition, and optimization. Monet. Econ. Stud. 2002, 20, 87–122. [Google Scholar]
- Barone-Adesi, G.; Engle, R.F.; Mancini, L. A GARCH Option Pricing Model with Filtered Historical Simulation. Rev. Financ. Stud. 2008, 21, 1223–1258. [Google Scholar] [CrossRef]
- Magadia, J. Confidence Interval for Expected Shortfall using Bootstrap Methods. In Proceedings of the 4th Annual BSP-UP Professional Chair Lectures, Bangko Sentral ng Pilipinas, Malate, Manila, Philippines, 21–23 February 2011. [Google Scholar]
- Cont, R. Empirical properties of asset returns: Stylized facts and statistical issues. Quant. Financ. 2001, 1, 223–236. [Google Scholar] [CrossRef]
- Drees, H. Extreme quantile Estimation for dependent data, with application to finance. Bernoulli 2003, 9, 617–657. [Google Scholar] [CrossRef]
- Alexander, C. Market Risk Analysis, Value at Risk Models; John Wiley & Sons: Hoboken, NJ, USA, 2009; Volume 4. [Google Scholar]
- McNeil, A.J.; Frey, R.; Embrechts, P. Quantitative Risk Management: Concepts, Techniques, and Tools; Princeton University Press: Princeton, NJ, USA, 2010. [Google Scholar]
- Davis, M. Verification of internal risk measure estimates. Stat. Risk Model. 2016, 33, 67–93. [Google Scholar] [CrossRef]
- Acerbi, C.; Szekely, B. Backtesting expected shortfall. Risk Mag. 2014, 27, 76–81. [Google Scholar]
- Ziegel, J.F. Coherence and elicitability. Math. Financ. 2016, 26, 901–918. [Google Scholar] [CrossRef]
- Frank, D. Adjusting VAR to Correct Sample Volatility Bias. Risk Magazine October. 2016. Available online: https://www.risk.net/risk-management/2475717/adjusting-var-correct-sample-volatility-bias (accessed on 20 December 2022).
- Bucolo, M.; Buscarino, A.; Fortuna, L.; Gagliano, S. Multidimensional Discrete Chaotic Maps. Front. Phys. 2022, 10, 199. [Google Scholar] [CrossRef]
- Umeno, K.U.K. Chaotic Monte Carlo Computation: A Dynamical Effect of Random-Number Generations. Jpn. J. Appl. Phys. 2000, 39, 1442–1456. [Google Scholar] [CrossRef] [Green Version]
n | p | q | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
GPD | Student’s t-Test | N(0,1) | |||||||||||||||
30 | 0.90 | 0.95 | 0.3704 | 0.6170 | 0.7629 | 0.6351 | 3.0778 | 0.4951 | 1.1608 | 1.4127 | 0.6442 | 0.6687 | 0.6395 | 2.3625 | 2.7567 | 0.4848 | 1.2645 |
0.90 | 0.97 | 1.1157 | 1.8370 | 1.7129 | 1.7095 | 8.8617 | 1.0266 | 2.2624 | 2.1632 | 0.8610 | 4.5020 | 0.9339 | 3.1180 | 2.7707 | 0.6174 | 1.5516 | |
0.90 | 0.99 | 0.4412 | 0.9591 | 0.7595 | 0.7562 | 2.9942 | 0.5753 | 1.1668 | 1.2338 | 0.5554 | 0.7482 | 0.5373 | 1.7450 | 1.9845 | 0.3699 | 0.8247 | |
0.1944 | 1.4144 | 0.1850 | 5.5124 | 0.1413 | 3.0142 | ||||||||||||
0.95 | 0.99 | 0.5868 | 1.5563 | 0.7289 | 0.8695 | 2.8118 | 0.5600 | 1.4055 | 1.0591 | 0.6043 | 1.1978 | 0.5159 | 1.2962 | 1.3685 | 0.3852 | 0.7019 | |
0.1440 | 0.5045 | 0.1092 | 0.8010 | 0.0606 | 1.1985 | ||||||||||||
2.4861 | 0.6482 | 3.8952 | 0.1753 | 4.3096 | |||||||||||||
100 | 0.90 | 0.95 | 1.0136 | 1.6392 | 2.7245 | 4.3550 | 30.0715 | 0.9458 | 4.1248 | 2.9190 | 0.6664 | 1.7078 | 0.9399 | 8.8502 | 3.5330 | 0.6421 | 2.9785 |
0.90 | 0.97 | 0.9955 | 1.4886 | 3.0427 | 3.4308 | 27.5909 | 0.9434 | 3.4578 | 3.2329 | 0.6599 | 1.1799 | 0.8891 | 7.6579 | 3.9790 | 0.6048 | 1.9272 | |
0.90 | 0.99 | 0.9935 | 1.4874 | 3.3770 | 2.3855 | 23.3081 | 0.9297 | 3.1006 | 3.6722 | 0.7285 | 1.0124 | 0.8636 | 7.3716 | 4.5362 | 0.6069 | 1.3870 | |
0.8958 | 19.5694 | 0.8399 | 0.9089 | 0.6772 | 0.8173 | ||||||||||||
0.95 | 0.99 | 1.0298 | 1.4818 | 3.1933 | 1.6793 | 16.2055 | 0.9606 | 2.3017 | 3.6080 | 0.9579 | 1.0801 | 0.8211 | 4.9537 | 4.6617 | 0.6669 | 0.8576 | |
0.8789 | 12.5912 | 0.9482 | 1.3515 | 0.5638 | 1.0281 | ||||||||||||
0.1446 | 0.8555 | 0.1009 | 0.4242 | 0.0335 | 0.0547 | ||||||||||||
250 | 0.90 | 0.95 | 0.9466 | 1.9889 | 4.0012 | 6.6997 | 60.2381 | 0.9998 | 9.1369 | 5.6867 | 0.7755 | 1.1210 | 1.0190 | 21.5678 | 6.9466 | 0.7021 | 1.1124 |
0.90 | 0.97 | 0.9897 | 1.7595 | 4.8413 | 6.1350 | 61.9315 | 1.0212 | 7.9031 | 6.4552 | 0.7597 | 1.1598 | 1.0062 | 19.5989 | 7.8825 | 0.6833 | 1.0907 | |
0.90 | 0.99 | 0.9877 | 1.6376 | 5.5025 | 4.1585 | 53.9612 | 1.0129 | 6.7049 | 7.2854 | 0.8263 | 1.2199 | 1.0090 | 19.8743 | 8.9640 | 0.7340 | 1.0441 | |
48.1856 | 0.7241 | 1.1937 | 0.8061 | 0.9422 | |||||||||||||
0.95 | 0.99 | 1.0323 | 1.4286 | 5.4753 | 2.5450 | 40.5005 | 1.0571 | 4.1732 | 6.8251 | 0.9349 | 1.4533 | 1.0289 | 13.6812 | 8.7194 | 0.8475 | 1.2020 | |
31.0938 | 0.9096 | 1.7515 | 0.9203 | 1.5271 | |||||||||||||
0.5210 | 6.7592 | 0.3442 | 1.7518 | 0.1326 | 0.8061 | ||||||||||||
500 | 0.90 | 0.95 | 1.0138 | 3.2545 | 3.5089 | 17.7057 | 136.2577 | 0.9964 | 16.1244 | 4.3109 | 0.6967 | 1.2577 | 0.9909 | 40.9206 | 4.9194 | 0.6710 | 1.4998 |
0.90 | 0.97 | 0.9901 | 2.4164 | 5.1351 | 14.0492 | 127.2878 | 0.9753 | 13.0704 | 6.1295 | 0.6891 | 1.2042 | 0.9539 | 35.2031 | 6.8935 | 0.6609 | 1.3548 | |
0.90 | 0.99 | 0.9941 | 2.0466 | 7.0472 | 9.0053 | 110.0205 | 0.9883 | 11.0968 | 8.4780 | 0.7459 | 1.1941 | 0.9730 | 36.0310 | 9.2007 | 0.7047 | 1.1250 | |
0.9765 | 87.1302 | 0.9880 | 1.1082 | 0.7660 | 0.9435 | ||||||||||||
0.95 | 0.99 | 0.9892 | 1.4267 | 8.0369 | 4.3250 | 75.5526 | 0.9958 | 6.2728 | 10.1727 | 0.8693 | 1.2649 | 0.9648 | 23.6321 | 11.8011 | 0.8076 | 0.9668 | |
0.9560 | 58.4255 | 0.9280 | 1.3822 | 0.6994 | 1.1214 | ||||||||||||
0.5575 | 14.3386 | 0.4415 | 2.8509 | 0.2257 | 1.9549 | ||||||||||||
1000 | 0.90 | 0.95 | 1.0051 | 5.1937 | 5.5181 | 36.0557 | 276.7373 | 1.0019 | 30.0736 | 6.1346 | 0.6674 | 1.1035 | 0.9972 | 75.8635 | 6.7328 | 0.6743 | 1.2340 |
0.90 | 0.97 | 0.9842 | 3.5747 | 7.7135 | 27.5497 | 250.7777 | 0.9842 | 24.3248 | 8.6272 | 0.6527 | 1.1199 | 0.9650 | 64.4906 | 9.3164 | 0.6678 | 1.2139 | |
0.90 | 0.99 | 0.9913 | 2.8267 | 10.5087 | 17.2286 | 213.6938 | 1.0058 | 20.1837 | 11.9185 | 0.7133 | 1.1146 | 0.9898 | 67.1564 | 12.5048 | 0.7098 | 1.0592 | |
0.9344 | 165.433 | 0.7719 | 1.0597 | 0.9218 | 0.9511 | ||||||||||||
0.95 | 0.99 | 0.9880 | 1.6997 | 11.7349 | 7.7225 | 145.1197 | 1.0136 | 10.7052 | 13.9441 | 0.8383 | 1.1503 | 0.9871 | 43.9631 | 15.9078 | 0.8122 | 0.9866 | |
0.8927 | 110.5812 | 0.8673 | 1.2072 | 0.7212 | 1.1267 | ||||||||||||
35.9417 | 1.0907 | 0.9702 | 0.6581 |
n | p | q | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
(,) | (,) | |||||||||||
30 | 0.90 | 0.95 | 0.9393 | 0.7067 | 1.3518 | 0.2338 | 0.9746 | 0.7752 | 1.8135 | 2.4579 | 0.3222 | 1.1859 |
0.90 | 0.97 | 0.9316 | 0.6697 | 1.3082 | 0.3088 | 0.7447 | 0.9325 | 2.0245 | 2.1787 | 0.3964 | 1.0901 | |
0.90 | 0.99 | 0.9137 | 0.6150 | 1.3671 | 0.3274 | 0.9233 | 0.6825 | 1.3880 | 1.9503 | 0.2891 | 0.8092 | |
0.2948 | 1.2333 | 0.1683 | 3.1030 | |||||||||
0.95 | 0.99 | 0.9109 | 0.5461 | 1.3848 | 0.4560 | 0.8904 | 0.6461 | 1.0559 | 1.4892 | 0.3540 | 0.6666 | |
0.1996 | 1.6649 | 0.0611 | 1.4097 | |||||||||
0.6108 | 3.0935 | 0.2255 | 3.9557 | |||||||||
100 | 0.90 | 0.95 | 0.9689 | 0.9520 | 1.3507 | 0.2755 | 1.0296 | 0.9324 | 4.6609 | 2.5654 | 0.3454 | 1.9372 |
0.90 | 0.97 | 0.9608 | 0.9086 | 1.4054 | 0.2939 | 0.9704 | 0.9157 | 4.1361 | 2.8280 | 0.3540 | 1.3882 | |
0.90 | 0.99 | 0.9486 | 0.8420 | 1.4972 | 0.3166 | 0.9431 | 0.8786 | 4.1094 | 3.2281 | 0.3543 | 1.1352 | |
0.3661 | 0.9108 | 0.1683 | 3.1030 | |||||||||
0.95 | 0.99 | 0.9246 | 0.7276 | 1.6514 | 0.3740 | 0.8773 | 0.6461 | 1.0559 | 1.4892 | 0.3540 | 0.6666 | |
0.4036 | 0.8522 | 0.4754 | 0.8236 | |||||||||
0.1251 | 0.1776 | 0.0361 | 0.0606 | |||||||||
250 | 0.90 | 0.95 | 1.0006 | 1.5630 | 1.4698 | 0.2923 | 1.0615 | 1.0098 | 10.2840 | 4.2836 | 0.3755 | 1.1226 |
0.90 | 0.97 | 0.9963 | 1.5095 | 1.5406 | 0.3172 | 1.0609 | 1.0008 | 11.1308 | 4.6397 | 0.3921 | 1.0594 | |
0.90 | 0.99 | 0.9929 | 1.4261 | 1.6923 | 0.3517 | 1.0547 | 1.0006 | 8.8790 | 5.5738 | 0.4196 | 1.0250 | |
0.3728 | 1.0582 | 0.4430 | 0.9914 | |||||||||
0.95 | 0.99 | 0.9874 | 1.2656 | 1.9140 | 0.4438 | 1.0380 | 1.0092 | 7.4102 | 6.2170 | 0.5661 | 1.0471 | |
0.4511 | 1.0245 | 0.5994 | 1.1297 | |||||||||
0.4904 | 1.0329 | 0.2025 | 0.5711 | |||||||||
500 | 0.90 | 0.95 | 0.9964 | 2.1937 | 1.3552 | 0.3188 | 1.0679 | 0.9851 | 19.4459 | 3.1098 | 0.3474 | 1.2039 |
0.90 | 0.97 | 0.9950 | 2.1005 | 1.4985 | 0.3437 | 1.0474 | 0.9821 | 19.1484 | 4.0124 | 0.3650 | 1.0914 | |
0.90 | 0.99 | 0.9896 | 1.9697 | 1.7588 | 0.3741 | 1.0308 | 0.9711 | 17.2998 | 5.4852 | 0.3870 | 1.0157 | |
0.3851 | 1.0071 | 0.4552 | 0.9784 | |||||||||
0.95 | 0.99 | 0.9814 | 1.6951 | 2.2980 | 0.4573 | 0.9858 | 0.9608 | 14.0243 | 7.9080 | 0.5191 | 0.9305 | |
0.4696 | 0.9677 | 0.5856 | 0.9132 | |||||||||
0.5531 | 1.2491 | 0.5531 | 1.2491 | |||||||||
1000 | 0.90 | 0.95 | 0.9999 | 3.6383 | 1.4551 | 0.2905 | 1.1181 | 0.9925 | 25.1321 | 4.0596 | 0.3422 | 1.1181 |
0.90 | 0.97 | 0.9996 | 3.4880 | 1.6256 | 0.3213 | 1.0407 | 0.9916 | 24.7609 | 5.1372 | 0.3599 | 1.0407 | |
0.90 | 0.99 | 0.9977 | 3.2691 | 1.9563 | 0.3582 | 0.9636 | 0.9857 | 23.7890 | 7.0635 | 0.3807 | 0.9636 | |
0.3889 | 0.9461 | 0.4750 | 0.9461 | |||||||||
0.95 | 0.99 | 0.9947 | 2.7792 | 2.6165 | 0.4594 | 0.8745 | 0.9815 | 23.001 | 9.9279 | 0.5091 | 0.8745 | |
0.4868 | 0.8465 | 0.9243 | 0.8465 | |||||||||
0.5882 | 0.7420 | 0.6999 | 0.7420 |
p | q | Z | p-Value | Z | p-Value | Z | p-Value | Z | p-Value | Z | p-Value |
---|---|---|---|---|---|---|---|---|---|---|---|
Model | (i) | (ii) | (iii) | (iv) | (v) | ||||||
0.90 | 0.95 | 1.5354 | 0.675 | 1.4531 | 0.522 | 0.9985 | 0.415 | 0.9390 | 0.398 | 0.9994 | 0.404 |
0.90 | 0.97 | 1.4661 | 0.708 | 1.3878 | 0.522 | 0.9986 | 0.440 | 0.9799 | 0.398 | 0.9996 | 0.405 |
0.90 | 0.99 | 1.3785 | 0.646 | 1.3190 | 0.521 | 0.9986 | 0.486 | 0.9847 | 0.399 | 0.9999 | 0.407 |
1.3544 | 1.2507 | 0.9988 | 0.504 | 0.9873 | 1.0001 | 0.409 | |||||
0.95 | 0.99 | 1.2791 | 0.602 | 1.2001 | 0.521 | 0.9988 | 0.538 | 0.9904 | 0.397 | 1.0003 | 0.407 |
1.2319 | 0.511 | 1.1142 | 0.9988 | 0.9925 | 1.0004 | 0.407 | |||||
1.1306 | 1.0012 | 0.9989 | 0.9964 | 1.0007 | 0.413 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biswas, S.; Sen, R. Nonparametric Estimation of Range Value at Risk. Computation 2023, 11, 28. https://doi.org/10.3390/computation11020028
Biswas S, Sen R. Nonparametric Estimation of Range Value at Risk. Computation. 2023; 11(2):28. https://doi.org/10.3390/computation11020028
Chicago/Turabian StyleBiswas, Suparna, and Rituparna Sen. 2023. "Nonparametric Estimation of Range Value at Risk" Computation 11, no. 2: 28. https://doi.org/10.3390/computation11020028
APA StyleBiswas, S., & Sen, R. (2023). Nonparametric Estimation of Range Value at Risk. Computation, 11(2), 28. https://doi.org/10.3390/computation11020028