Mathematical Modeling for Estimating the Risk of Rice Farmers’ Losses Due to Weather Changes
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Materials
3.1.1. Risk Model
- Pure risk is a risk that results in only two types: loss or break even, for example, theft, accident, or fire.
- Speculative risk is a risk that results in three types: loss, profit or break even, for example, gambling.
- Particular risks are risks that come from individuals and local impacts, for example, plane crashes, car crashes, and ship aground.
- Fundamental risk is a risk that does not come from individuals and the impact is wide, for example, hurricanes, earthquakes, and floods.
3.1.2. Rice Plants
Upland Rice
Swamp Rice
Pera Rice
Sticky Rice
Pandan Wangi Rice
3.1.3. Cobb–Douglas Production Function
- : rice production per planting period (kg)
- : rainfall (mm)
- : temperature (°C)
- : wind speed (m/s)
- : random error
- : natural logarithm.
- If , there is a constant increase in returns to scale of production, (Scale of returns is constant).
- If , there is an increasing scale of return.
- If , there is an additional drop back to scale.
3.2. Methods
3.2.1. Risk Measurement
3.2.2. Peak over Threshold
4. Results
4.1. Mathematical Modelling
4.2. Data Analysis Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Appendix C
Appendix D
No | Productivity Q (ton) | Wind Speed (m/s) | Temperature | Rainfall (mm) |
---|---|---|---|---|
1 | 6.285 | 3.560 | 26.00 | 77.80 |
2 | 6.595 | 3.090 | 26.60 | 78.60 |
3 | 6.372 | 2.690 | 26.40 | 75.80 |
4 | 5.968 | 2.540 | 26.70 | 78.40 |
5 | 6.668 | 2.130 | 26.10 | 81.00 |
6 | 6.703 | 3.010 | 26.30 | 79.70 |
7 | 6.744 | 3.410 | 26.30 | 81.10 |
8 | 6.619 | 3.700 | 26.60 | 79.30 |
9 | 6.578 | 2.690 | 26.50 | 79.80 |
10 | 5.783 | 3.370 | 26.40 | 78.30 |
11 | 6.357 | 3.610 | 26.60 | 78.20 |
12 | 6.018 | 4.143 | 26.40 | 76.60 |
13 | 5.908 | 4.603 | 26.50 | 81.50 |
14 | 5.797 | 5.063 | 26.50 | 78.20 |
15 | 6.285 | 5.320 | 26.40 | 75.40 |
16 | 6.595 | 4.420 | 26.60 | 80.40 |
17 | 6.372 | 2.980 | 26.50 | 76.10 |
18 | 5.968 | 4.350 | 26.60 | 78.30 |
19 | 6.668 | 4.640 | 27.10 | 76.30 |
20 | 6.703 | 4.680 | 26.40 | 78.40 |
21 | 6.744 | 5.040 | 26.50 | 79.50 |
22 | 6.619 | 5.600 | 26.70 | 80.60 |
23 | 6.578 | 2.720 | 26.90 | 85.50 |
24 | 5.783 | 4.300 | 26.80 | 88.50 |
25 | 6.357 | 5.660 | 26.80 | 87.40 |
26 | 6.018 | 7.167 | 26.90 | 80.60 |
27 | 5.908 | 8.637 | 26.80 | 90.50 |
28 | 5.797 | 10.107 | 26.80 | 80.30 |
29 | 6.018 | 3.560 | 26.60 | 80.32 |
30 | 5.908 | 3.090 | 27.00 | 90.92 |
31 | 5.797 | 2.690 | 27.10 | 110.02 |
32 | 6.285 | 2.540 | 26.80 | 87.30 |
33 | 6.595 | 2.130 | 26.90 | 70.60 |
34 | 6.372 | 3.010 | 27.00 | 70.90 |
35 | 5.968 | 3.410 | 27.00 | 90.40 |
36 | 6.668 | 3.700 | 27.10 | 80.60 |
37 | 6.703 | 2.690 | 27.40 | 120.02 |
38 | 5.754 | 3.370 | 27.00 | 90.90 |
39 | 5.682 | 3.610 | 27.10 | 100.20 |
40 | 5.578 | 4.143 | 27.20 | 120.00 |
References
- Riaman, R.; Sukono, S.; Supian, S.; Ismail, N. Analysing the decision making for agricultural risk assessment: An application of extreme value theory. Decis. Sci. Lett. 2021, 10, 351–360. [Google Scholar] [CrossRef]
- Raghu, S.; Guru-Pirasanna, G.; Baite, M.S.; Yadav, M.K.; Prabhukarthikeyan, S.R.; Keerthana, U.; Rath, P.C. Estimation of yield loss and relationship of weather parameters on incidence of bakanae disease in paddy varieties under shallow low land ecologies of Eastern India. J. Environ. Biol. 2021, 42, 995–1001. [Google Scholar] [CrossRef]
- Ali, S.; Ghosh, B.C.; Osmani, A.G.; Hossain, E.; Fogarassy, C. Farmers’ climate change adaptation strategies for reducing the risk of rice production: Evidence from rajshahi district in Bangladesh. Agronomy 2021, 11, 600. [Google Scholar] [CrossRef]
- Brahmantyo, Y.; Riaman, R.; Sukono, F. Willingness to Pay of Fishermen Insurance Using Logistic Regression with Parameter Estimated by Maximum Likelihood Estimation Based on Newton Raphson Iteration. J. Mat. Integr. 2021, 17, 15–21. [Google Scholar] [CrossRef]
- Riaman, R.; Sukono, S.; Supian, S.; Ismail, N. Determining the premium of paddy insurance using the extreme value theory method and the operational value at risk approach. J. Phys. Conf. Ser. 2021, 1722, 012059. [Google Scholar] [CrossRef]
- Sang, A.J.; Tay, K.M.; Lim, C.P.; Nahavandi, S. Application of a Genetic-Fuzzy FMEA to Rainfed Lowland Paddy Production in Sarawak: Environmental, Health, and Safety Perspectives. IEEE Access 2018, 6, 74628–74647. [Google Scholar] [CrossRef]
- Sujarwo, S.; Rukmi, S.M.N. Factors affecting agricultural insurance acceptability of paddy farmers in East Java, Indonesia. J. Manaj. Agribisnis 2018, 15, 143. [Google Scholar] [CrossRef]
- Savary, S.; Horgan, F.; Willocquet, L.; Heong, K.L. A review of principles for sustainable pest management in paddy. Crop. Prot. 2012, 32, 54–63. [Google Scholar] [CrossRef]
- Sheehy, J.E.; Mitchell, P.L.; Ferrer, A.B. Decline in paddy grain yields with temperature: Models and correlations can give different estimates. Field Crops Res. 2006, 98, 151–156. [Google Scholar] [CrossRef]
- Dhaene, J.; Kukush, A.; Linders, D.; Tang, Q. Remarks on quantiles and distortion risk measures. Eur. Actuar. J. 2012, 2, 319–328. [Google Scholar] [CrossRef]
- Tavanaie Marvi, M.; Linders, D. Decomposition of Natural Catastrophe Risks: Insurability Using Parametric CAT Bonds. Risks 2021, 9, 215. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, J.; Zhang, L. Risk assessment, partition and economic loss estimation of paddy production in China. Sustainability 2015, 7, 563–583. [Google Scholar] [CrossRef]
- Liu, F.; Corcoran, C.P.; Tao, J.; Cheng, J. Risk perception, insurance recognition and agricultural insurance behavior—An empirical based on dynamic panel data in 31 provinces of China. Int. J. Disaster Risk Reduct. 2016, 20, 19–25. [Google Scholar] [CrossRef]
- Ramaswami, B. Supply response to agricultural insurance: Risk reduction and moral hazard effects. Am. J. Agric. Econ. 1993, 75, 914–925. [Google Scholar] [CrossRef]
- Polukhin, A.A.; Panarina, V.I. Financial Risk Management for Sustainable Agricultural Development Based on Corporate Social Responsibility in the Interests of Food Security. Risks 2022, 10, 17. [Google Scholar] [CrossRef]
- Kijima, Y. Farmers’ risk preferences and paddy production: Experimental and panel data evidence from Uganda. PLoS ONE 2019, 14, 219202. [Google Scholar]
- Budhathoki, N.K.; Lassa, J.A.; Pun, S.; Zander, K.K. Farmers’ interest and willingness-to-pay for index-based crop insurance in the lowlands of Nepal. Land Use Policy 2019, 85, 1–10. [Google Scholar] [CrossRef]
- Ghoshal, P.; Goswami, B. Cobb-Douglas production function for measuring efficiency in Indian agriculture: A region-wise analysis. Econ. Aff. 2017, 62, 295084. [Google Scholar] [CrossRef]
- Kumar, A.J.; Rohila, A.K.; Pal, V.K. Profitability and resource use efficiency in vegetable cultivation in Haryana: Application of Cobb-Douglas production model. Indian J. Agric. Sci. 2018, 88, 153–157. [Google Scholar]
- Wang, Y.; Huang, J.; Wang, J.; Findlay, C. Mitigating paddy production risks from drought through improving irrigation infrastructure and management in China. Aust. J. Agric. Resour. Econ. 2018, 62, 161–176. [Google Scholar] [CrossRef]
- Wang, H.H.; Tack, J.B.; Coble, K.H. Frontier studies in agricultural insurance. Geneva Pap. Risk Insur.-Issues Pract. 2020, 45, 1–4. [Google Scholar] [CrossRef]
- Yanuarti, R.; Aji, J.M.M.; Rondhi, M. Risk aversion level influence on farmer’s decision to participate in crop insurance: A review. Agric. Econ. 2019, 65, 481–489. [Google Scholar] [CrossRef]
- Villano, R.; Fleming, E. Technical inefficiency and production risk in paddy farming: Evidence from Central Luzon Philippines. Asian Econ. J. 2006, 20, 29–46. [Google Scholar] [CrossRef]
- Vedenov, D.V.; Sanchez, L. Weather derivatives as risk management tool in Ecuador: A case study of paddy production. In Proceedings of the Selected Paper Prepared for Presentation at the Southern Agricultural Economics Association Annual Meeting, Corpus Christi, TX, USA, 5–8 February 2011. [Google Scholar]
- Khai, H.V.; Yabe, M. Technical efficiency analysis of paddy production in Vietnam. J. ISSAAS 2011, 17, 135–146. [Google Scholar]
- Nantui, M.F.; Bruce, S.D.; Yaw, O.A. Adaptive capacities of farmers to climate change adaptation strategies and their effects on paddy production in the northern region of Ghana. Russ. J. Agric. Socio-Econ. Sci. 2012, 11, 9–17. [Google Scholar]
- Nikkhah, A.; Emadi, B.; Soltanali, H.; Firouzi, S.; Rosentrater, K.A.; Allahyari, M.S. Integration of life cycle assessment and Cobb-Douglas modeling for the environmental assessment of kiwifruit in Iran. J. Clean. Prod. 2016, 137, 843–849. [Google Scholar] [CrossRef]
- Ioan, C.A.; Ioan, G. The Complete Theory of Cobb-Douglas Production Function. Acta Univ. Danub. 2015, 11, 74–114. [Google Scholar]
- Kaka, Y.; Shamsudin, M.N.; Radam, A.; Abd Latif, I. Profit efficiency among paddy farmers: A Cobb-Douglas stochastic frontier production function analysis. J. Asian Sci. Res. 2016, 6, 66–75. [Google Scholar] [CrossRef]
- Umar, H.S.; Girei, A.A.; Yakubu, D. Comparison of Cobb-Douglas and Translog frontier models in the analysis of technical efficiency in dry season tomato production. Agrosearch 2017, 17, 67. [Google Scholar] [CrossRef]
- Singh, A.K.; Narayanan, K.G.; Sharma, P. Effect of climatic factors on cash crop farming in India: An application of Cobb-Douglas production function model. Int. J. Agric. Resour. Gov. Ecol. 2017, 13, 175–210. [Google Scholar] [CrossRef]
- Kumar, V.; Singh, S.; Kumar, R.M.; Sharma, S.; Tripathi, R.; Nayak, A.K.; Ladha, J.K. Growing Paddy in Eastern India: New Paradigms of risk reduction and improving productivity. In The Future Paddy Strategy for India; Academic Press: New Delhi, India, 2017; pp. 221–258. [Google Scholar]
- Entezari, A.F.; Wong, K.S.; Ali, F. Malaysia’s Agricultural Production Dropped and the Impact of Climate Change: Applying and Extending the Theory of Cobb Douglas Production. Agrar. J. Agribus. Rural. Dev. Res. 2021, 7, 127–141. [Google Scholar] [CrossRef]
- Uche, C.O.; Umar, H.S.; Girei, A.A.; Ibrahim, H.Y. Performance of Translog and Cobb-Douglas models in the estimation of technical efficiency of Irish potato production in Plateau State, Nigeria. Agro-Sci. 2021, 20, 62–67. [Google Scholar] [CrossRef]
- Kaylen, M.S.; Loehman, E.T.; Preckel, P.V. Farm-level analysis of agricultural insurance: A mathematical programming approach. Agric. Syst. 1989, 30, 235–244. [Google Scholar] [CrossRef]
- Riaman, R.; Sukono, S.; Supian, S.; Ismail, N. Mapping in the Topic of Mathematical Model in Paddy Agricultural Insurance Based on Bibliometric Analysis: A Systematic Review Approach. Computation 2022, 10, 50. [Google Scholar] [CrossRef]
- Yamuangmorn, S.; Jumrus, S.; Jamjod, S.; Yimyam, N.; Prom-u-Thai, C. Stabilizing grain yield and nutrition quality in purple paddy varieties by management of planting elevation and storage conditions. Agronomy 2021, 11, 83. [Google Scholar] [CrossRef]
- Islam, M.M.; Ahamed, T.; Noguchi, R. Land suitability and insurance premiums: A GIS-based multicriteria analysis approach for sustainable paddy production. Sustainability 2018, 10, 1759. [Google Scholar] [CrossRef]
- Zulkafli, Z.; Muharam, F.M.; Raffar, N.; Jajarmizadeh, A.; Abdi, M.J.; Rehan, B.M.; Nurulhuda, K. Contrasting Influences of Seasonal and IntraSeasonal Hydroclimatic Variabilities on the Irrigated Paddy Paddies of Northern Peninsular Malaysia for Weather Index Insurance Design. Sustainability 2021, 13, 5207. [Google Scholar] [CrossRef]
- Sukono, S.; Riaman, R.; Supian, S.; Hidayat, Y.; Saputra, J.; Pribadi, D. Investigating the agricultural losses due to climate variability: An application of conditional value-at-risk approach. Decis. Sci. Lett. 2021, 10, 71–78. [Google Scholar] [CrossRef]
- Tsakaev, A.K.; Saidov, Z.A. Identification and analysis of the risk of reducing the stability of the Russian agricultural insurance system. Espacios 2018, 39, 22090. [Google Scholar]
- Varadan, R.J.; Kumar, P. Impact of crop insurance on paddy farming in Tamil Nadu. Agric. Econ. Res. Rev. 2012, 25, 291–298. [Google Scholar]
- Diop, A.N. Agricultural Risk Pricing in Senegal. J. Math. Financ. 2019, 9, 182. [Google Scholar] [CrossRef]
- Rahmawati, N.; Isnawan, B.H. Technical efficiency of paddy farm under risk of uncertainty weather in Yogyakarta, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2020, 423, 012036. [Google Scholar]
- Asimit, A.V.; Vernic, R.; Zitikis, R. Evaluating risk measures and capital allocations based on multi-losses driven by a heavy-tailed background risk: The multivariate Pareto-II model. Risks 2013, 1, 14–33. [Google Scholar] [CrossRef]
- Amnuaylojaroen, T.; Chanvichit, P.; Janta, R.; Surapipith, V. Projection of paddy and maize productions in Northern Thailand under climate change scenario RCP8. 5. Agriculture 2021, 11, 23. [Google Scholar] [CrossRef]
- Faroni, S.; Le Courtois, O.; Ostaszewski, K. Equivalent Risk Indicators: VaR, TCE, and Beyond. Risks 2022, 10, 142. [Google Scholar] [CrossRef]
- Syuhada, K.; Neswan, O.; Josaphat, B.P. Estimating Copula-Based Extension of Tail Value-at-Risk and Its Application in Insurance Claim. Risks 2022, 10, 113. [Google Scholar] [CrossRef]
- Demirer, R.; Gkillas, K.; Kountzakis, C.; Mavragani, A. Risk Appetite and Jumps in Realized Correlation. Mathematics 2020, 8, 2255. [Google Scholar] [CrossRef]
# | Distribution | Kolmogorov Smirnov | Anderson Darling | Chi-Squared | |||
---|---|---|---|---|---|---|---|
Statistic | Rank | Statistic | Rank | Statistic | Rank | ||
1 | Beta | 0.11192 | 5 | 0.68607 | 4 | 1.75600 | 5 |
2 | Exponential | 0.10034 | 3 | 0.31211 | 1 | 0.61500 | 2 |
3 | Exponential (2p) | 0.09466 | 2 | 1.09920 | 5 | 0.82823 | 3 |
4 | Gen. Extreme Value | 0.10730 | 4 | 0.60817 | 3 | 1.37110 | 4 |
5 | Gen. Pareto | 0.08324 | 1 | 0.36822 | 2 | 0.47797 | 1 |
6 | Normal | 0.15392 | 6 | 1.59750 | 6 | 3.27000 | 6 |
7 | Pareto | 0.26462 | 7 | 6.75510 | 7 | 9.03440 | 7 |
8 | Student’s t | No fit |
# | Distribution | Parameters |
---|---|---|
1 | Beta | α1 = 0.50082 α2 = 1.1546 a = 9.700 × 10−4 b = 0.0659 |
2 | Exponential | λ = 53.252 |
3 | Exponential (2p) | λ = 56.049 γ = 9.3700 × 10−4 |
4 | Gen. Extreme Value | k = 0.163 σ = 0.01139 μ = 0.01036 |
5 | Gen. Pareto | k = −0.01662 σ = 0.02306 μ = −0.00105 |
6 | Normal | σ = 0.02306 μ = −0.00105 |
7 | Pareto | α = 0.40141 β = 9.3700 × 10−4 |
8 | Student’s t | No fit |
Distribution | VaR | CVaR | TVaR | |
---|---|---|---|---|
Normal | 0.95 | 0.039086 | 0.04114318 | 0.080229 |
0.99 | 0.056688 | 0.05726110 | 0.113950 | |
0.999 | 0.075548 | 0.07562391 | 0.151172 | |
Exponential | 0.95 | 0.0231298 | 0.02345126 | 0.04658106 |
0.99 | 0.0324114 | 0.05453217 | 0.08694357 | |
0.999 | 0.0567435 | 0.06675345 | 0.12349695 | |
GPD | 0.95 | 0.0290863 | 0.03113418 | 0.06022048 |
0.99 | 0.0478682 | 0.05834212 | 0.10621032 | |
0.999 | 0.0643547 | 0.06564287 | 0.12999757 |
Distribution | VaR | CVaR | TVaR | |
---|---|---|---|---|
Normal | 0.95 | 312,688.00 | 329,145.44 | 641,832.00 |
0.99 | 453,504.00 | 458,088.80 | 911,600.00 | |
0.999 | 604,384.00 | 604,991.28 | 1,209,376.00 | |
Exponential | 0.95 | 185,038.40 | 187,610.08 | 372,648.48 |
0.99 | 259,291.20 | 436,257.36 | 695,548.56 | |
0.999 | 453,948.00 | 534,027.60 | 987,975.60 | |
GPD | 0.95 | 232,690.40 | 249,073.44 | 481,763.84 |
0.99 | 382,945.60 | 466,736.96 | 849,682.56 | |
0.999 | 514,837.60 | 525,142.96 | 1,039,980.56 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riaman; Sukono; Supian, S.; Ismail, N. Mathematical Modeling for Estimating the Risk of Rice Farmers’ Losses Due to Weather Changes. Computation 2022, 10, 140. https://doi.org/10.3390/computation10080140
Riaman, Sukono, Supian S, Ismail N. Mathematical Modeling for Estimating the Risk of Rice Farmers’ Losses Due to Weather Changes. Computation. 2022; 10(8):140. https://doi.org/10.3390/computation10080140
Chicago/Turabian StyleRiaman, Sukono, Sudradjat Supian, and Noriszura Ismail. 2022. "Mathematical Modeling for Estimating the Risk of Rice Farmers’ Losses Due to Weather Changes" Computation 10, no. 8: 140. https://doi.org/10.3390/computation10080140
APA StyleRiaman, Sukono, Supian, S., & Ismail, N. (2022). Mathematical Modeling for Estimating the Risk of Rice Farmers’ Losses Due to Weather Changes. Computation, 10(8), 140. https://doi.org/10.3390/computation10080140