Improved Unsupervised Learning Method for Material-Properties Identification Based on Mode Separation of Ultrasonic Guided Waves
Abstract
:1. Introduction
2. Data Extraction and Initialization
3. Objective Functions
3.1. Method Based on the Calculation of the Fourier Transform of Green’s Matrix
3.2. Method Based on the Slowness Residuals
4. Multi-Stage Algorithm for Material-Properties Characterization
5. Examples of Material-Properties Identification Using Experimental Data
6. Comparison of Various Numerical Approaches for Material-Properties Characterization
7. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MPM | matrix pencil method |
UGWs | ultrasonic guided waves |
SRM | method based on the minimization of the slowness residuals |
GMM | the method based on the calculation of the Fourier transform of Green’s matrix |
IMSA | the improved multi-stage algorithm |
References
- Cui, R.; Lanza di Scalea, F. Identification of Elastic Properties of Composites by Inversion of Ultrasonic Guided Wave Data. Exp. Mech. 2021, 61, 803–816. [Google Scholar] [CrossRef]
- Tam, J.; Ong, Z.; Ismail, Z.; Ang, B.; Khoo, S. Identification of material properties of composite materials using nondestructive vibrational evaluation approaches: A review. Mech. Adv. Mater. Struct. 2017, 24, 971–986. [Google Scholar] [CrossRef]
- Lugovtsova, Y.; Bulling, J.; Boller, C.; Prager, J. Analysis of guided wave propagation in a multi-layered structure in view of structural health monitoring. Appl. Sci. 2019, 9, 4600. [Google Scholar] [CrossRef] [Green Version]
- Kralovec, C.; Schagerl, M. Review of Structural Health Monitoring Methods Regarding a Multi-Sensor Approach for Damage Assessment of Metal and Composite Structures. Sensors 2020, 20, 826. [Google Scholar] [CrossRef] [Green Version]
- Klyuchinskiy, D.; Novikov, N.; Shishlenin, M. A Modification of Gradient Descent Method for Solving Coefficient Inverse Problem for Acoustics Equations. Computation 2020, 8, 73. [Google Scholar] [CrossRef]
- Aabid, A.; Parveez, B.; Raheman, M.A.; Ibrahim, Y.E.; Anjum, A.; Hrairi, M.; Parveen, N.; Mohammed Zayan, J. A Review of Piezoelectric Material-Based Structural Control and Health Monitoring Techniques for Engineering Structures: Challenges and Opportunities. Actuators 2021, 10, 101. [Google Scholar] [CrossRef]
- Hughes, J.M.; Mohabuth, M.; Khanna, A.; Vidler, J.; Kotousov, A.; Ng, C.T. Damage detection with the fundamental mode of edge waves. Struct. Health Monit. 2021, 20, 74–83. [Google Scholar] [CrossRef]
- Bai, L.; Le Bourdais, F.; Miorelli, R.; Calmon, P.; Velichko, A.; Drinkwater, B.W. Ultrasonic Defect Characterization Using the Scattering Matrix: A Performance Comparison Study of Bayesian Inversion and Machine Learning Schemas. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2021, 68, 3143–3155. [Google Scholar] [CrossRef]
- Ewald, V.; Sridaran Venkat, R.; Asokkumar, A.; Benedictus, R.; Boller, C.; Groves, R.M. Perception modelling by invariant representation of deep learning for automated structural diagnostic in aircraft maintenance: A study case using DeepSHM. Mech. Syst. Signal Process. 2022, 165, 108153. [Google Scholar] [CrossRef]
- Cui, R.; Lanza di Scalea, F. On the identification of the elastic properties of composites by ultrasonic guided waves and optimization algorithm. Compos. Struct. 2019, 223, 110969. [Google Scholar] [CrossRef]
- Araque, L.; Wang, L.; Mal, A.; Schaal, C. Advanced fuzzy arithmetic for material characterization of composites using guided ultrasonic waves. Mech. Syst. Signal Process. 2022, 171, 108856. [Google Scholar] [CrossRef]
- Chen, Q.; Xu, K.; Ta, D. High-resolution Lamb waves dispersion curves estimation and elastic property inversion. Ultrasonics 2021, 115, 106427. [Google Scholar] [CrossRef]
- Chang, C.; Yuan, F. Dispersion curve extraction of Lamb waves in metallic plates by matrix pencil method. SPIE 2017, 10168, 1016807. [Google Scholar] [CrossRef]
- Pogorelyuk, L.; Rowley, C.W. Clustering of Series via Dynamic Mode Decomposition and the Matrix Pencil Method. arXiv 2018, arXiv:1802.09878. [Google Scholar]
- Okumura, S.; Nguyen, V.H.; Taki, H.; Haïat, G.; Naili, S.; Sato, T. Rapid High-Resolution Wavenumber Extraction from Ultrasonic Guided Waves Using Adaptive Array Signal Processing. Appl. Sci. 2018, 8, 652. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Xu, K.; Li, D.; Ta, D.; Wang, W. Automatic mode extraction of ultrasonic guided waves using synchrosqueezed wavelet transform. Ultrasonics 2019, 99, 105948. [Google Scholar] [CrossRef]
- Xu, K.; Ta, D.; Moilanen, P.; Wang, W. Mode separation of Lamb waves based on dispersion compensation method. J. Acoust. Soc. Am. 2012, 131, 2714–2722. [Google Scholar] [CrossRef]
- De, S.; Hai, B.S.M.E.; Doostan, A.; Bause, M. Prediction of Ultrasonic Guided Wave Propagation in Fluid–Structure and Their Interface under Uncertainty Using Machine Learning. J. Eng. Mech. 2022, 148, 04021161. [Google Scholar] [CrossRef]
- Gu, M.; Li, Y.; Tran, T.N.; Song, X.; Shi, Q.; Xu, K.; Ta, D. Spectrogram decomposition of ultrasonic guided waves for cortical thickness assessment using basis learning. Ultrasonics 2022, 120, 106665. [Google Scholar] [CrossRef]
- Ren, L.; Gao, F.; Wu, Y.; Williamson, P.; Wang, W.; McMechan, G.A. Automatic picking of multi-mode dispersion curves using CNN-based machine learning. In SEG Technical Program Expanded Abstracts 2020; Nedorub, O., Swinford, B., Eds.; Society of Exploration Geophysicists: Houston, TX, USA, 2020; pp. 1551–1555. [Google Scholar] [CrossRef]
- Zhang, J.; He, Q.; Xiao, Y.; Zheng, H.; Wang, C.; Luo, J. Self-Supervised Learning of a Deep Neural Network for Ultrafast Ultrasound Imaging as an Inverse Problem. In Proceedings of the 2020 IEEE International Ultrasonics Symposium (IUS), Las Vegas, NV, USA, 7–11 September 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Rautela, M.; Gopalakrishnan, S.; Gopalakrishnan, K.; Deng, Y. Ultrasonic Guided Waves Based Identification of Elastic Properties Using 1D-Convolutional Neural Networks. In Proceedings of the 2020 IEEE International Conference on Prognostics and Health Management (ICPHM), Detroit, MI, USA, 8–10 June 2020; pp. 1–7. [Google Scholar] [CrossRef]
- Gopalakrishnan, K.; Rautela, M.; Deng, Y. Deep Learning Based Identification of Elastic Properties Using Ultrasonic Guided Waves. In European Workshop on Structural Health Monitoring; Rizzo, P., Milazzo, A., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 77–90. [Google Scholar]
- Li, Y.; Xu, K.; Li, Y.; Xu, F.; Ta, D.; Wang, W. Deep Learning Analysis of Ultrasonic Guided Waves for Cortical Bone Characterization. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2021, 68, 935–951. [Google Scholar] [CrossRef]
- Tam, J.H. Identification of elastic properties utilizing non-destructive vibrational evaluation methods with emphasis on definition of objective functions: A review. Struct. Multidiscip. Optim. 2020, 61, 1677–1710. [Google Scholar] [CrossRef]
- Golub, M.V.; Doroshenko, O.V.; Arsenov, M.; Bareiko, I.; Eremin, A.A. Identification of material properties of elastic plate using guided waves based on the matrix pencil method and laser Doppler vibrometry. Symmetry 2022, 14, 1077. [Google Scholar] [CrossRef]
- Nozato, H.; Kokuyama, W.; Shimoda, T.; Inaba, H. Calibration of laser Doppler vibrometer and laser interferometers in high-frequency regions using electro-optical modulator. Precis. Eng. 2021, 70, 135–144. [Google Scholar] [CrossRef]
- Wilde, M.V.; Golub, M.V.; Eremin, A.A. Experimental and theoretical investigation of transient edge waves excited by a piezoelectric transducer bonded to the edge of a thick elastic plate. J. Sound Vib. 2019, 441, 26–49. [Google Scholar] [CrossRef]
- Wilde, M.V.; Golub, M.V.; Eremin, A.A. Elastodynamic behaviour of laminate structures with soft thin interlayers: Theory and experiment. Materials 2022, 15, 1307. [Google Scholar] [CrossRef]
- Glushkov, E.V.; Glushkova, N.V. On the efficient implementation of the integral equation method in elastodynamics. J. Comput. Acoust. 2001, 9, 889–898. [Google Scholar] [CrossRef]
- Neumann, M.N.; Hennings, B.; Lammering, R. Identification and Avoidance of Systematic Measurement Errors in Lamb Wave Observation With One-Dimensional Scanning Laser Vibrometry. Strain 2013, 49, 95–101. [Google Scholar] [CrossRef]
- Moll, J.; Eremin, A.A.; Golub, M. The influence of global and local temperature variation on elastic guided wave excitation, propagation and scattering. In Proceedings of the 9th European Workshop on Structural Health Monitoring EWSHM 2018, Manchester, UK, 10–13 July 2018; p. 0264. [Google Scholar]
- Alleyne, D.N.; Cawley, P. A two-dimensional Fourier transform method for the measurement of propagating multimode signals. J. Acoust. Soc. Am. 1991, 89, 1159–1168. [Google Scholar] [CrossRef]
- Glushkov, E.; Glushkova, N.; Eremin, A. Forced wave propagation and energy distribution in anisotropic laminate composites. J. Acoust. Soc. Am. 2011, 129, 2923–2934. [Google Scholar] [CrossRef]
- Fomenko, S.I.; Golub, M.V.; Doroshenko, O.V.; Wang, Y.; Zhang, C. An advanced boundary integral equation method for wave propagation analysis in a layered piezoelectric phononic crystal with a crack or an electrode. J. Comput. Phys. 2021, 447, 110669. [Google Scholar] [CrossRef]
- Golub, M.V.; Doroshenko, O.V.; Wilde, M.V.; Eremin, A.A. Experimental validation of the applicability of effective spring boundary conditions for modelling damaged interfaces in laminate structures. Compos. Struct. 2021, 273, 114141. [Google Scholar] [CrossRef]
Method | Computational Time, s | ||
---|---|---|---|
Synthesized data | |||
GMM | 2.3 | 2.5 | 4.4 |
SRM | 9104 | 9848 | 16,652 |
IMSA | 738 | 1193 | 2120 |
Experimental data | |||
Aluminium | Duraluminium | Steel | |
GMM | 12.7 | 14.8 | 15.9 |
SRM | 8680 | 9257 | 9784 |
IMSA | 1088 | 1125 | 1226 |
Method | Dataset | ||
---|---|---|---|
GMM | 0.380% | 0.265% | 0.242% |
SRM | 0.133% | 0.153% | 0.096% |
IMSA | 0.168% | 0.158% | 0.115% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Golub, M.V.; Doroshenko, O.V.; Arsenov, M.A.; Eremin, A.A.; Gu, Y.; Bareiko, I.A. Improved Unsupervised Learning Method for Material-Properties Identification Based on Mode Separation of Ultrasonic Guided Waves. Computation 2022, 10, 93. https://doi.org/10.3390/computation10060093
Golub MV, Doroshenko OV, Arsenov MA, Eremin AA, Gu Y, Bareiko IA. Improved Unsupervised Learning Method for Material-Properties Identification Based on Mode Separation of Ultrasonic Guided Waves. Computation. 2022; 10(6):93. https://doi.org/10.3390/computation10060093
Chicago/Turabian StyleGolub, Mikhail V., Olga V. Doroshenko, Mikhail A. Arsenov, Artem A. Eremin, Yan Gu, and Ilya A. Bareiko. 2022. "Improved Unsupervised Learning Method for Material-Properties Identification Based on Mode Separation of Ultrasonic Guided Waves" Computation 10, no. 6: 93. https://doi.org/10.3390/computation10060093
APA StyleGolub, M. V., Doroshenko, O. V., Arsenov, M. A., Eremin, A. A., Gu, Y., & Bareiko, I. A. (2022). Improved Unsupervised Learning Method for Material-Properties Identification Based on Mode Separation of Ultrasonic Guided Waves. Computation, 10(6), 93. https://doi.org/10.3390/computation10060093