Influence of the Chemical Pressure on the Magnetic Properties of the Mixed Anion Cuprates Cu2OX2 (X = Cl, Br, I)
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Crystal Structure of Cu2OCl2
3.2. Geometry Optimization
3.3. Electronic Properties
3.4. Magnetic Exchange Interactions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fiebig, M.; Lottermoser, T.; Meier, D.; Trassin, M. The evolution of multiferroics. Nat. Rev. Mater. 2016, 1, 16046. [Google Scholar] [CrossRef]
- Gilioli, E.; Ehm, L. High pressure and multiferroics materials: A happy marriage. Int. Union Crystallogr. J. 2014, 1, 590–603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rocquefelte, X.; Schwarz, K.; Blaha, P.; Kumar, S.; van den Brink, J. Room-temperature spin-spiral multiferroicity in high-pressure cupric oxide. Nat. Commun. 2013, 4, 2511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lafargue-Dit-Hauret, W.; Braithwaite, D.; Huxley, A.D.; Kimura, T.; Saúl, A.; Rocquefelte, X. Potential room-temperature multiferroicity in cupric oxide under high pressure. Phys. Rev. B 2021, 103, 214432. [Google Scholar] [CrossRef]
- Manuel, P. Private communication. 2022. [Google Scholar]
- Banks, M.G.; Kremer, R.K.; Hoch, C.; Simon, A.; Ouladdiaf, B.; Broto, J.M.; Rakoto, H.; Lee, C.; Whangbo, M.H. Magnetic ordering in the frustrated Heisenberg chain system cupric chloride CuCl2. Phys. Rev. B 2009, 80, 024404. [Google Scholar] [CrossRef]
- Zhao, L.; Hung, T.L.; Li, C.C.; Chen, Y.Y.; Wu, M.K.; Kremer, R.K.; Banks, M.G.; Simon, A.; Whangbo, M.H.; Lee, C.; et al. CuBr2—A New Multiferroic Material with High Critical Temperature. Adv. Mater. 2012, 24, 2469–2473. [Google Scholar] [CrossRef] [Green Version]
- Okabe, H.; Suzuki, K.; Kawashima, K.; Muranaka, T.; Akimitsu, J. New Pyrochlore-like Compound Cu2OCl2 with S = 1/2. J. Phys. Soc. Jpn. 2006, 75, 123705. [Google Scholar] [CrossRef]
- Kawashima, K.; Okabe, H.; Suzuki, K.; Kuroiwa, S.; Akimitsu, J.; Sato, K.H.; Koda, A.; Kadono, R. Antiferromagnetic ordering in Cu2OCl2 studied by the muon spin rotation/relaxation technique. J. Phys. Condens. Matter 2007, 19, 145275. [Google Scholar] [CrossRef]
- Nishiyama, M.; Oyamada, A.; Itou, T.; Maegawa, S.; Okabe, H.; Akimitsu, J. NMR study of pyrochlore lattice antiferromagnet, melanothallite Cu2OCl2. J. Phys. Conf. Ser. 2011, 320, 012030. [Google Scholar] [CrossRef]
- Zhao, L.; Fernández-Díaz, M.T.; Tjeng, L.H.; Komarek, A.C. Oxyhalides: A new class of high-Tc multiferroic materials. Sci. Adv. 2016, 2, e1600353. [Google Scholar] [CrossRef] [Green Version]
- Araújo, B.S.; Arévalo-López, A.M.; Attfield, J.P.; Paschoal, C.W.A.; Ayala, A.P. Spin-phonon coupling in melanothallite Cu2OCl2. Appl. Phys. Lett. 2018, 113, 222901. [Google Scholar] [CrossRef]
- Guo, H.; Zhao, L.; Schmidt, W.; Fernández-Díaz, M.T.; Becker, C.; Melendez-Sans, A.; Peng, W.; Zbiri, M.; Hansmann, P.; Komarek, A.C. Multiferroic properties of melanothallite Cu2OCl2. Phys. Rev. Mater. 2019, 3, 124405. [Google Scholar] [CrossRef]
- Wu, H.C.; Yuan, J.K.; Chandrasekhar, K.D.; Lee, C.H.; Li, W.H.; Wang, C.W.; Chen, J.M.; Lin, J.Y.; Berger, H.; Yen, T.W.; et al. Observation of charge–transfer–driven antiferroelectricity in 3d-pyrochlore multiferroic Cu2OCl2. Mater. Today Phys. 2019, 8, 34–42. [Google Scholar] [CrossRef]
- Tsirlin, A.A.; Janson, O.; Rosner, H. Electronic Structure and Magnetic Properties of Melanothallite (Cu2OCl2), a Gateway to Understanding Copper Oxychlorides; Russian Mineralogical Society: Kirovsk, Russia, 2010; Volume 1, p. 61. [Google Scholar]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [Green Version]
- Dudarev, S.L.; Botton, G.A.; Savrasov, S.Y.; Humphreys, C.J.; Sutton, A.P. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B 1998, 57, 1505–1509. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef] [Green Version]
- Blaha, P.; Schwarz, K.; Madsen, G.K.H.; Kvasnicka, D.; Luitz, J.; Laskowsk, R.; Tran, F.; Marks, L.; Marks, L. WIEN2k: An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties; Vienna University of Technology Institute of Materials Chemistry Getreidemarkt 9/165-TC A-1060: Vienna, Austria, 2019; ISBN 3-9501031-1-2. [Google Scholar]
- Krivovichev, S.V.; Filatov, S.K.; Burns, P.C. The cuprite-like framework of OCu4 tetrahedra in the crystal structure of synthetic melanothallite, Cu2OCl2, and its negative thermal expansion. Can. Mineral. 2002, 40, 1185–1190. [Google Scholar] [CrossRef] [Green Version]
- Filatov, S.K.; Bubnova, R.S. The nature of special points on unit cell parameters temperature dependences for crystal substances. In Tenth European Powder Diffraction Conference: Geneva, Switzerland, 1–4 September 2006; Für Kristallographie, D.G., Ed.; Number 26; Oldenbourg Wissenschaftsverlag: Munchen, Germany, 2007; pp. 447–452. [Google Scholar]
- Zheng, X.G.; Kubozono, H.; Yamada, H.; Kato, K.; Ishiwata, Y.; Xu, C.N. Giant negative thermal expansion in magnetic nanocrystals. Nat. Nanotechnol. 2008, 3, 724–726. [Google Scholar] [CrossRef] [PubMed]
- Sleight, A.W. Compounds That Contract on Heating. Inorg. Chem. 1998, 37, 2854–2860. [Google Scholar] [CrossRef]
- Rocquefelte, X.; Schwarz, K.; Blaha, P. Comment on High-Tc Ferroelectricity Emerging from Magnetic Degeneracy in Cupric Oxide. Phys. Rev. Lett. 2011, 107, 239701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yasuda, C.; Todo, S.; Hukushima, K.; Alet, F.; Keller, M.; Troyer, M.; Takayama, H. Néel Temperature of Quasi-Low-Dimensional Heisenberg Antiferromagnets. Phys. Rev. Lett. 2005, 94, 217201. [Google Scholar] [CrossRef]
- Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272–1276. [Google Scholar] [CrossRef]
Cu2OCl2 (Exp.) | Cu2OCl2 | Cu2OBr2 | Cu2OI2 | |
---|---|---|---|---|
a (Å) | 7.4477 | 7.4675 (+0.3) | 7.7203 | 8.1680 |
b (Å) | 9.5989 | 9.6448 (+0.5) | 9.9962 | 10.5578 |
c (Å) | 9.6888 | 9.7337 (+0.5) | 9.7661 | 10.1226 |
V () | 692.65 | 701.05 (+1.2) | 753.69 | 872.93 |
0.3241 | 0.3237 (−0.1) | 0.3138 | 0.3104 | |
Cu-O (Å) | 1.943 | 1.951 (+0.4) | 1.996 | 2.094 |
Cu-X (Å) | 2.283 | 2.295 (+0.5) | 2.408 | 2.543 |
Cu-X (Å) | 3.123 | 3.132 (+0.3) | 3.214 | 3.391 |
Cu-O-Cu () | 102.86 | 102.82 (0.0) | 104.58 | 105.65 |
Cu-X-Cu () | 83.42 | 83.25 (−0.2) | 81.93 | 82.01 |
hinge angle () | 63.20 | 63.13 (−0.1) | 62.42 | 62.10 |
Cu2OCl2 | Cu-Cu (Å) | 3.049 | 3.067 | 3.426 | 6.099 |
(3.037) | (3.055) | (3.410) | (6.075) | ||
Cu-O-Cu () | 102.82 | 103.65 | 122.82 | - | |
(102.86) | (103.70) | (122.72) | - | ||
Cu2OBr2 | Cu-Cu (Å) | 3.158 | 3.112 | 3.494 | 6.315 |
Cu-O-Cu () | 104.58 | 102.47 | 122.16 | - | |
Cu2OI2 | Cu-Cu (Å) | 3.337 | 3.252 | 3.657 | 6.674 |
Cu-O-Cu () | 105.65 | 101.87 | 121.64 | - |
Cu2OCl2 | This work | −14.0 | −2.2 | 19.1 | 8.7 |
Theo. [15] | −15.5 | 19.0 1 | 8.6 | ||
Exp. [8] | 9.7 2 | 9.3 2 | - | ||
Cu2OBr2 | This work | −13.1 | 1.9 | 25.2 | 9.2 |
Cu2OI2 | This work | −8.1 | 24.2 | 41.0 | 15.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lafargue-Dit-Hauret, W.; Rocquefelte, X. Influence of the Chemical Pressure on the Magnetic Properties of the Mixed Anion Cuprates Cu2OX2 (X = Cl, Br, I). Computation 2022, 10, 73. https://doi.org/10.3390/computation10050073
Lafargue-Dit-Hauret W, Rocquefelte X. Influence of the Chemical Pressure on the Magnetic Properties of the Mixed Anion Cuprates Cu2OX2 (X = Cl, Br, I). Computation. 2022; 10(5):73. https://doi.org/10.3390/computation10050073
Chicago/Turabian StyleLafargue-Dit-Hauret, William, and Xavier Rocquefelte. 2022. "Influence of the Chemical Pressure on the Magnetic Properties of the Mixed Anion Cuprates Cu2OX2 (X = Cl, Br, I)" Computation 10, no. 5: 73. https://doi.org/10.3390/computation10050073
APA StyleLafargue-Dit-Hauret, W., & Rocquefelte, X. (2022). Influence of the Chemical Pressure on the Magnetic Properties of the Mixed Anion Cuprates Cu2OX2 (X = Cl, Br, I). Computation, 10(5), 73. https://doi.org/10.3390/computation10050073