Closed-Form Formula for the Conditional Moments of Log Prices under the Inhomogeneous Heston Model
Abstract
:1. Introduction
2. Inhomogeneous Heston Model
3. Main Results
4. Mathematical Properties
4.1. First Conditional Moment
4.2. Conditional Variance and Central Moments
4.3. Conditional Skewness and Higher Conditional Moments
Algorithm 1 Recursive coefficient functions. |
Input: conditional moments |
Output: for and |
5. Numerical Validation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ART | Average runtime |
CIR | Cox–Ingersoll–Ross |
ECIR | Extended Cox–Ingersoll–Ross |
EM | Euler–Maruyama |
MAE | Mean absolute error |
MC | Monte Carlo |
ODE | Ordinary differential equation |
PDE | Partial differential equation |
Probability density function | |
SDE | Stochastic differential equation |
References
- Heston, S.L. A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev. Financ. Stud. 1993, 6, 327–343. [Google Scholar] [CrossRef] [Green Version]
- Cox, J.C.; Ingersoll, J.E., Jr.; Ross, S.A. A theory of the term structure of interest rates. In Theory of Valuation; World Scientific: Singapore, 2005; pp. 129–164. [Google Scholar]
- He, X.J.; Zhu, P.S. An alternative form used to calibrate the Heston option pricing model. Comput. Math. Appl. 2016, 71, 1831–1842. [Google Scholar] [CrossRef] [Green Version]
- He, X.J.; Zhu, P.S. A closed-form pricing formula for European options under the Heston model with stochastic interest rate. J. Comput. Appl. Math. 2018, 335, 323–333. [Google Scholar] [CrossRef] [Green Version]
- Zeng, X.C.; Zhu, P.S. A new simple tree approach for the Heston’s stochastic volatility model. Comput. Math. Appl. 2019, 78, 1993–2010. [Google Scholar] [CrossRef]
- Lu, X.; Zhu, P.S.; Yan, D. Nonlinear PDE model for European options with transaction costs under Heston stochastic volatility. Commun. Nonlinear Sci. Numer. Simul. 2021, 103, 105986. [Google Scholar] [CrossRef]
- Zhu, P.S.; Lian, G.H. On the convexity correction approximation in pricing volatility swaps and VIX futures. New Math. Natural Comput. 2018, 14, 383–401. [Google Scholar] [CrossRef]
- He, X.J.; Zhu, P.S. A series-form solution for pricing variance and volatility swaps with stochastic volatility and stochastic interest rate. Comput. Math. Appl. 2018, 76, 2223–2234. [Google Scholar] [CrossRef]
- Zhu, P.S.; Lian, G.H. A closed-form exact solution for pricing variance swaps with stochastic volatility. Math. Financ. Int. J. Math. Stat. Financ. Econ. 2011, 21, 233–256. [Google Scholar]
- Zhu, P.S.; Lian, G.H. On the valuation of variance swaps with stochastic volatility. Appl. Math. Comput. 2012, 219, 1654–1669. [Google Scholar] [CrossRef]
- Zhu, P.S.; Lian, G.H. Analytically pricing volatility swaps under stochastic volatility. J. Comput. Appl. Math. 2015, 288, 332–340. [Google Scholar] [CrossRef]
- Batrancea, L. An econometric approach regarding the impact of fiscal pressure on equilibrium: Evidence from electricity, gas and oil companies listed on the New York Stock Exchange. Mathematics 2021, 9, 630. [Google Scholar] [CrossRef]
- Batrancea, L.; Rus, M.I.; Masca, E.S.; Morar, I.D. Fiscal Pressure as a Trigger of Financial Performance for the Energy Industry: An Empirical Investigation across a 16-Year Period. Energies 2021, 14, 3769. [Google Scholar] [CrossRef]
- Batrancea, L.; Rathnaswamy, M.K.; Batrancea, I. A panel data analysis on determinants of economic growth in seven non-BCBS Countries. J. Knowl. Econ. 2021, 12, 1–15. [Google Scholar] [CrossRef]
- Hansen, L.P.; Scheinkman, J.A. Back to the Future: Generating Moment Implications for Continuous-Time Markov Processes. Econometrica 1995, 63, 767–804. [Google Scholar] [CrossRef]
- Hull, J.; White, A. Pricing interest-rate-derivative securities. Rev. Financ. Stud. 1990, 3, 573–592. [Google Scholar] [CrossRef]
- Maghsoodi, Y. Solution of the extended CIR term structure and bond option valuation. Math. Financ. 1996, 6, 89–109. [Google Scholar] [CrossRef]
- Rujivan, S. A closed-form formula for the conditional moments of the extended CIR process. J. Comput. Appl. Math. 2016, 297, 75–84. [Google Scholar] [CrossRef]
- Nonsoong, P.; Mekchay, K.; Rujivan, S. An analytical option pricing formula for mean-reverting asset with time-dependent parameter. ANZIAM J. 2021, 63, 178–202. [Google Scholar]
- Grzelak, L.A.; Oosterlee, C.W. On the Heston model with stochastic interest rates. SIAM J. Financ. Math. 2011, 2, 255–286. [Google Scholar] [CrossRef] [Green Version]
- Karatzas, I.; Shreve, S. Brownian Motion and Stochastic Calculus; Springer Science & Business Media: New York, NY, USA, 2012; Volume 113. [Google Scholar]
- Strang, G. Introduction to Linear Algebra; Wellesley-Cambridge Press: Wellesley, MA, USA, 1993; Volume 3. [Google Scholar]
- Rogers, L.C.G.; Williams, D. Diffusions, Markov Processes and Martingales: Volume 2, Itô Calculus; Cambridge University Press: Cambridge, UK, 2000; Volume 2. [Google Scholar]
- Ekström, E.; Lötstedt, P.; Tysk, J. Boundary values and finite difference methods for the single factor term structure equation. Appl. Math. Financ. 2009, 16, 253–259. [Google Scholar] [CrossRef]
- Forman, J.L.; Sørensen, M. The Pearson diffusions: A class of statistically tractable diffusion processes. Scand. J. Stat. 2008, 35, 438–465. [Google Scholar] [CrossRef]
- Schmidt, M.F. Pearson Diffusions with Jumps. Ph.D. Thesis, Technische Universitat Munchen, München, Germany, 2008. [Google Scholar]
- Sutthimat, P.; Mekchay, K.; Rujivan, S. Explicit formula for conditional expectations of product of polynomial and exponential function of affine transform of extended Cox-Ingersoll-Ross process. J. Phys. Conf. Ser. IOP Pub. 2018, 1132, 012083. [Google Scholar] [CrossRef]
- Sutthimat, P.; Rujivan, S.; Mekchay, K.; Rakwongwan, U. Analytical formula for conditional expectations of path-dependent product of polynomial and exponential functions of extended Cox–Ingersoll–Ross process. Res. Math. Sci. 2022, 9, 1–17. [Google Scholar] [CrossRef]
- Sutthimat, P.; Mekchay, K. Closed-form formulas for conditional moments of inhomogeneous Pearson diffusion processes. Commun. Nonlinear Sci. Numer. Simul. 2022, 106, 106095. [Google Scholar] [CrossRef]
- Chumpong, K.; Mekchay, K.; Rujivan, S. A simple closed-form formula for the conditional moments of the Ornstein–Uhlenbeck process. Songklanakarin J. Sci. Technol. 2020, 42, 836–845. [Google Scholar]
- Chumpong, K.; Mekchay, K.; Thamrongrat, N. Analytical formulas for pricing discretely-sampled skewness and kurtosis swaps based on Schwartz’s one-factor model. Songklanakarin J. Sci. Technol. 2021, 43, 1–6. [Google Scholar]
- Rujivan, S.; Zhu, P.S. A simplified analytical approach for pricing discretely-sampled variance swaps with stochastic volatility. Appl. Math. Lett. 2012, 25, 1644–1650. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.; Zhao, L. A closed-form pricing formula for variance swaps under MRG–Vasicek model. Comput. Appl. Math. 2019, 38, 1–17. [Google Scholar] [CrossRef]
- Zheng, W.; Kwok, Y.K. Closed form pricing formulas for discretely sampled generalized variance swaps. Math. Financ. 2014, 24, 855–881. [Google Scholar] [CrossRef]
- Boonklurb, R.; Duangpan, A.; Treeyaprasert, T. Modified finite integration method using Chebyshev polynomial for solving linear differential equations. J. Numer. Ind. Appl. Math 2018, 12, 1–19. [Google Scholar]
- Boonklurb, R.; Duangpan, A.; Gugaew, P. Numerical solution of direct and inverse problems for time-dependent Volterra integro-differential equation using finite integration method with shifted Chebyshev polynomials. Symmetry 2020, 12, 497. [Google Scholar] [CrossRef] [Green Version]
- Duangpan, A.; Boonklurb, R.; Juytai, M. Numerical solutions for systems of fractional and classical integro-differential equations via Finite Integration Method based on shifted Chebyshev polynomials. Fractal Fract. 2021, 5, 103. [Google Scholar] [CrossRef]
- Oosterlee, C.W.; Grzelak, L.A. Mathematical Modeling and Computation in Finance: With Exercises and Python and Matlab Computer Codes; World Scientific: Singapore, 2019. [Google Scholar]
- Asmussen, S.; Glynn, P.W. Stochastic Simulation: Algorithms and Analysis; Springer Science & Business Media: New York, NY, USA, 2007; Volume 57. [Google Scholar]
x | No. of Paths | ||||||
---|---|---|---|---|---|---|---|
MAEs | ARTs | MAEs | ARTs | MAEs | ARTs | ||
1 | 20,000 | 9.14 | 8.78 | 10.05 | |||
40,000 | 17.98 | 19.11 | 18.65 | ||||
80,000 | 36.57 | 36.88 | 35.52 | ||||
5 | 20,000 | 8.81 | 9.24 | 9.11 | |||
40,000 | 19.22 | 18.05 | 18.63 | ||||
80,000 | 35.64 | 37.06 | 37.69 | ||||
10 | 20,000 | 9.54 | 9.47 | 9.17 | |||
40,000 | 18.87 | 18.55 | 17.57 | ||||
80,000 | 37.87 | 36.14 | 36.36 |
x | No. of Paths | ||||||
---|---|---|---|---|---|---|---|
MAEs | ARTs | MAEs | ARTs | MAEs | ARTs | ||
1 | 20,000 | 11.14 | 9.54 | 10.13 | |||
40,000 | 18.05 | 19.91 | 20.57 | ||||
80,000 | 39.78 | 40.24 | 39.76 | ||||
5 | 20,000 | 10.81 | 10.49 | 9.61 | |||
40,000 | 19.52 | 21.59 | 21.03 | ||||
80,000 | 38.30 | 39.14 | 40.11 | ||||
10 | 20,000 | 9.98 | 10.08 | 11.79 | |||
40,000 | 20.17 | 21.11 | 20.50 | ||||
80,000 | 39.88 | 40.47 | 39.96 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chumpong, K.; Sumritnorrapong, P. Closed-Form Formula for the Conditional Moments of Log Prices under the Inhomogeneous Heston Model. Computation 2022, 10, 46. https://doi.org/10.3390/computation10040046
Chumpong K, Sumritnorrapong P. Closed-Form Formula for the Conditional Moments of Log Prices under the Inhomogeneous Heston Model. Computation. 2022; 10(4):46. https://doi.org/10.3390/computation10040046
Chicago/Turabian StyleChumpong, Kittisak, and Patcharee Sumritnorrapong. 2022. "Closed-Form Formula for the Conditional Moments of Log Prices under the Inhomogeneous Heston Model" Computation 10, no. 4: 46. https://doi.org/10.3390/computation10040046
APA StyleChumpong, K., & Sumritnorrapong, P. (2022). Closed-Form Formula for the Conditional Moments of Log Prices under the Inhomogeneous Heston Model. Computation, 10(4), 46. https://doi.org/10.3390/computation10040046