Imbalanced Learning Based on Data-Partition and SMOTE
Abstract
:1. Introduction
- proposing a data-partition based method to enhance separability between majority class and minority class, and thus improving the performance of conventional methods on class-imbalance data;
- combining an oversampling technique, namely SMOTE, with a data-partition method through oversampling the partitioned data to obtain a more balanced one, and thus further enhancing the performance of traditional methods on imbalanced problems;
- extensive experiments are conducted and the corresponding results show that the proposed method significantly outperforms the other state-of-the-art methods on measures of recall, g-mean, f-measure and AUC.
2. Related Work
2.1. Characteristics of Imbalanced Data
- Imbalanced Class Distribution: The imbalance degree of a data set is often denoted by the ratio of the size of the majority class to that of the minority class. The studies carried out by Weiss and Provostin [22] showed that the model constructed on a relatively balanced distribution usually obtains a better classification performance. However, it is difficult to explicitly state at what imbalance degree the class distribution would deteriorate the classification performance due to other factors including class overlapping and within-class subconcepts also affecting the performance.
- Small Sample Size: For a data with a given imbalance degree, the data size determines the performance of a classification model. If the data size is small, limited examples of the minority class can not cover the inherent regularities. The studies carried out by Japkowicz and Stephen [23] indicated that, providing a large enough data set, the imbalanced class distribution may not affect the classification performance. However, in practice, collecting sufficient data for class imbalanced data sets is challenging [24].
- Class Overlapping: Class overlapping is the major issue that causes the difficulty of separating the minority class from the majority class. Simple rules can be induced to distinguish class examples if there are highly discriminative patterns existing in the examples among different classes. However, if the examples belonging to different classes overlap, it is hard for discriminative models to be induced, and, in most cases, examples belonging to the minority class are incorrectly classified to the contrary cases.
- Within-Class Subconcepts: Within-class subconcepts mean that the examples of a class are collected from various subconcepts and the size of these subconcepts may be different. The existing of within-class concepts increases the learning concept complexity on the imbalanced data set [25].
2.2. Sampling Technique
2.3. Clustering
2.4. Evaluation Measures
3. Imbalanced Learning Based on Data-Partition and SMOTE
Algorithm 1 Imbalanced learning algorithm based on data-partition and SMOTE. |
Learning Stage: |
Input: |
D—training set; |
m—number of clusters; |
P—partition algorithm (e.g., K-Means); |
SM—over-sampling method SMOTE; |
Learn—classification method learning method. |
Output: a classifier repository M. |
1. Let and be majority and minority class set respectively; |
2. C = P(,m); |
3. for in C do |
4. ; |
5. = SM ; |
6. = Learn(); |
7. ; |
8. end for |
9. return M; |
Prediction Stage: |
Input: |
x—example to be classified; |
P—partition algorithms (e.g., K-Means); |
M—the classifier repository. |
Output: class label y to which example x belongs to |
10. = P(x); //get the label of cluster to which x belongs to |
11. y = ; //predict x’s class using corresponding model |
12. return y. |
4. Parameter Setting
5. Experiments
5.1. Experimental Setup
- Data-partition-KNN (DP-KNN) partitions the majority class into m clusters using K-Means and learns a KNN model on each set obtained by merging each cluster and minority class. For prediction, DP-KNN selects a KNN model according to the learned K-Means model to predict the example class. Here, we set (for KNN) , where and represent the size of majority class and that of minority class (refer to Section 4).
- SMOTE-KNN (S-KNN) oversamples the training set using SMOTE to obtain a relatively balanced class distribution, and on which a KNN model is learned. Similar to KNN and DP-KNN, k was set to 3.
- Data-partition-SMOTE-KNN (DPS-KNN) is similar to DP-KNN with the exception that DPS-KNN used both K-Means and SMOTE to preprocess the training set, and we set and .
- MWMOTE-KNN (MWMO-KNN) first oversamples the training set using MWMOTE [14], and, based on that, a KNN model is learned.
- C4.5 is an algorithm used to generate a decision tree developed by Ross Quinlan [58]. Authors of the Weka machine learning software described the C4.5 algorithm as “a landmark decision tree program that is probably the machine learning workhorse most widely used in practice to date” [59]. Here, a pruned C4.5 algorithm was used.
- Data-partition-C4.5 (DP-C4.5) is similar to DP-KNN with the exception that C4.5 was used to learn basic classifiers instead of KNN, and the partition number m was set to be .
- SMOTE-C4.5 (S-C4.5) is similar to S-KNN with the exception that C4.5 instead of KNN was used to train basic models.
- Data-partition-SMOTE-C4.5 (DPS-C4.5) is similar to DPS-KNN with the exception that C4.5 was used to train base models.
- MWMOTE-C4.5 (MWMO-C4.5) first oversamples the training set using MWMOTE [14], and, based on that, a C4.5 model is learned.
- Logistic regression (LR) [60] is a regression model where the dependent variable is categorical. In this paper, a binary logistic regression model was used to predict the class label of an example based on the example’s features.
- Data-partition-logistic-regression (DP-LR) is similar to DP-KNN except that DP-LR learns LR models instead of KNN.
- SMOTE-logistic-regression (S-LR) is similar to S-KNN except that S-LR learns LR models instead of KNN.
- Data-partition-SMOTE-logistic-regression (DPS-LR) is similar to DPS-KNN except that DPS-LR learns LR instead of KNN models.
- MWMOTE-LR (MWMO-LR) first oversamples the training set using MWMOTE [14], and, based on that, an LR model is learned.
- Support vector machine [61] (SVM) constructs a hyperplane or set of hyperplanes in a high-dimensional space, which can be used for classification. In the SVM model, a good separation is achieved by the hyperplane that has the largest distance to the nearest training data point of any class.
- Data-partition-SVM (DP-SVM) is similar to DP-KNN with the exception that SVM classification models instead of KNN were learned.
- SMOTE-SVM (S-SVM) is similar to S-KNN with the exception that SVM classification models instead of KNN were learned.
- Data-partition-SMOTE-SVM (DPS-SVM) is similar to DPS-KNN with the exception that SVM models instead of KNN were learned.
- MWMOTE-SVM (MWMO-SVM) first oversamples the training set using MWMOTE [14], and, based on that, an SVM model is learned.
- Neural Network (NN) [62] with one hidden layer was learned and the hidden units were set to be the mean of the input and output number.
- Data-partition-NN (DP-NN) is similar to DP-KNN, except that the NN model was used instead of KNN to train basic classifiers.
- SMOTE-NN (S-NN) is similar to S-KNN except that the NN model was used instead of KNN to train basic classifiers.
- Data-partition-SMOTE-NN (DPS-NN) is similar to DPS-KNN except that the NN model was used instead of KNN to train basic classifiers.
- MWMOTE-NN (MWMO-NN) first oversamples the training set using MWMOTE [14], and, based on that, an NN model is learned.
- Naive Bayes (NB) [63] is a simple probabilistic classifier with naive independence assumptions between the features.
- Data-partition-NB (DP-NB) is similar to DP-KNN with the exception that the learning model was NB instead of KNN.
- SMOTE-NB (S-NB) is similar to S-KNN with the exception that the learning model was NB instead of KNN.
- Data-partition-SMOTE-NB (DPS-NB) is similar to DPS-KNN with the exception that the learning model was NB instead of KNN.
- MWMOTE-NB (MWMO-NB) first oversamples the training set using MWMOTE [14], and, based on that, an NB model is learned.
5.2. Experimental Results
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Guo, H.; Li, Y.; Shang, J.; Mingyun, G.; Yuanyue, H.; Bing, G. Learning from class-imbalanced data: Review of methods and applications. Expert Syst. Appl. 2017, 73, 220–239. [Google Scholar] [CrossRef]
- Galar, M.; Fernández, A.; Tartas, E.B.; Sola, H.B.; Herrera, F. A Review on Ensembles for the Class Imbalance Problem: Bagging-, Boosting-, and Hybrid-Based Approaches. IEEE Trans. Syst. Man Cybern. Part C 2012, 42, 463–484. [Google Scholar] [CrossRef]
- Sanz, J.A.; Bernardo, D.; Herrera, F.; Bustince, H.; Hagras, H. A Compact Evolutionary Interval-Valued Fuzzy Rule-Based Classification System for the Modeling and Prediction of Real-World Financial Applications With Imbalanced Data. IEEE Trans. Fuzzy Syst. 2015, 23, 973–990. [Google Scholar] [CrossRef] [Green Version]
- López, V.; Fernández, A.; García, S.; Palade, V.; Herrera, F. An insight into classification with imbalanced data: Empirical results and current trends on using data intrinsic characteristics. Inf. Sci. 2013, 250, 113–141. [Google Scholar] [CrossRef]
- Chawla, N.V.; Japkowicz, N.; Kotcz, A. Editorial: Special issue on learning from imbalanced data sets. SIGKDD Explor. 2004, 6, 1–6. [Google Scholar] [CrossRef]
- Beyan, C.; Fisher, R.B. Classifying imbalanced data sets using similarity based hierarchical decomposition. Pattern Recognit. 2015, 48, 1653–1672. [Google Scholar] [CrossRef] [Green Version]
- Batista, G.E.A.P.A.; Prati, R.C.; Monard, M.C. A study of the behavior of several methods for balancing machine learning training data. SIGKDD Explor. 2004, 6, 20–29. [Google Scholar] [CrossRef]
- Liu, X.; Wu, J.; Zhou, Z. Exploratory Undersampling for Class-Imbalance Learning. IEEE Trans. Syst. Man Cybern. Part B Cybern. 2009, 39, 539–550. [Google Scholar] [CrossRef] [Green Version]
- Tahir, M.A.; Kittler, J.; Mikolajczyk, K.; Yan, F. A Multiple Expert Approach to the Class Imbalance Problem Using Inverse Random under Sampling. In Lecture Notes in Computer Science, Proceedings of the 8th International Workshop on Multiple Classifier Systems (MCS), Reykjavik, Iceland, 10–12 June 2009; Benediktsson, J.A., Kittler, J., Roli, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; Volume 5519, pp. 82–91. [Google Scholar] [CrossRef] [Green Version]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic Minority Over-sampling Technique. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Li, P.; Qiao, P.; Liu, Y. A Hybrid Re-sampling Method for SVM Learning from Imbalanced Data Sets. In Proceedings of the Fifth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), Jinan, China, 18–20 October 2008; Ma, J., Yin, Y., Yu, J., Zhou, S., Eds.; IEEE Computer Society: Washington, DC, USA, 2008; Volume 2, pp. 65–69. [Google Scholar] [CrossRef]
- Sobhani, P.; Viktor, H.; Matwin, S. Learning from Imbalanced Data Using Ensemble Methods and Cluster-Based Undersampling. In Proceedings of the Third International Workshop on New Frontiers in Mining Complex Patterns (NFMCP), Nancy, France, 19 September 2014; pp. 69–83. [Google Scholar] [CrossRef]
- Yen, S.; Lee, Y. Cluster-based under-sampling approaches for imbalanced data distributions. Expert Syst. Appl. 2009, 36, 5718–5727. [Google Scholar] [CrossRef]
- Barua, S.; Islam, M.M.; Yao, X.; Murase, K. MWMOTE-Majority Weighted Minority Oversampling Technique for Imbalanced Data Set Learning. IEEE Trans. Knowl. Data Eng. 2014, 26, 405–425. [Google Scholar] [CrossRef]
- Bhowan, U.; Johnston, M.; Zhang, M.; Yao, X. Evolving diverse ensembles using genetic programming for classification with unbalanced data. IEEE Trans. Evol. Comput. 2013, 17, 368–386. [Google Scholar] [CrossRef]
- Wang, S.; Yao, X. Multiclass imbalance problems: Analysis and potential solutions. IEEE Trans. Syst. Man Cybern. Part B Cybern. 2012, 42, 1119–1130. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.D.; Zhang, Y.; Phillips, P.; Dong, Z.; Wang, S. Synthetic minority oversampling technique and fractal dimension for identifying multiple sclerosis. Fractals 2017, 25, 1740010. [Google Scholar] [CrossRef]
- Zhang, Y.; Fu, P.; Liu, W.; Chen, G. Imbalanced data classification based on scaling kernel-based support vector machine. Neural Comput. Appl. 2014, 25, 927–935. [Google Scholar] [CrossRef]
- Guo, H.; Liu, H.; Wu, C.; Zhi, W.; Xiao, Y.; She, W. Logistic discrimination based on G-mean and F-measure for imbalanced problem. J. Intell. Fuzzy Syst. 2016, 31, 1155–1166. [Google Scholar] [CrossRef]
- Zhang, Q.; Yang, L.T.; Chen, Z.; Li, P. PPHOPCM: Privacy-preserving high-order possibilistic c-means algorithm for big data clustering with cloud computing. IEEE Trans. Big Data 2017. [Google Scholar] [CrossRef]
- Napierała, K.; Stefanowski, J.; Wilk, S. Learning from imbalanced data in presence of noisy and borderline examples. In Proceedings of the International Conference on Rough Sets and Current Trends in Computing, Warsaw, Poland, 28–30 June 2010; Springer: Berlin/Heidelberg, Germany, 2010; pp. 158–167. [Google Scholar]
- Weiss, G.M.; Provost, F.J. Learning When Training Data are Costly: The Effect of Class Distribution on Tree Induction. J. Artif. Intell. Res. 2003, 19, 315–354. [Google Scholar] [CrossRef]
- Japkowicz, N.; Stephen, S. The class imbalance problem: A systematic study. Intell. Data Anal. 2002, 6, 429–449. [Google Scholar]
- Lin, W.; Tsai, C.; Hu, Y.; Jhang, J. Clustering-based undersampling in class-imbalanced data. Inf. Sci. 2017, 409, 17–26. [Google Scholar] [CrossRef]
- Sun, Y.; Wong, A.K.C.; Kamel, M.S. Classification of Imbalanced Data: A Review. Int. J. Pattern Recognit. Artif. Intell. 2009, 23, 687–719. [Google Scholar] [CrossRef]
- Wang, S.; Minku, L.L.; Yao, X. Resampling-Based Ensemble Methods for Online Class Imbalance Learning. IEEE Trans. Knowl. Data Eng. 2015, 27, 1356–1368. [Google Scholar] [CrossRef]
- Lin, M.; Tang, K.; Yao, X. Dynamic sampling approach to training neural networks for multiclass imbalance classification. IEEE Trans. Neural Netw. Learn. Syst. 2013, 24, 647–660. [Google Scholar] [PubMed]
- Branco, P.; Torgo, L.; Ribeiro, R.P. A Survey of Predictive Modelling under Imbalanced Distributions. arXiv, 2015; arXiv:1505.01658. [Google Scholar]
- Zhai, J.; Zhai, M.; Kang, X. Condensed fuzzy nearest neighbor methods based on fuzzy rough set technique. Intell. Data Anal. 2014, 18, 429–447. [Google Scholar] [CrossRef]
- Devi, D.; Biswas, S.K.; Purkayastha, B. Redundancy-driven modified Tomek-link based undersampling: A solution to class imbalance. Pattern Recognit. Lett. 2017, 93, 3–12. [Google Scholar] [CrossRef]
- Nguyen, H.M.; Cooper, E.W.; Kamei, K. Borderline over-sampling for imbalanced data classification. Int. J. Knowl. Eng. Soft Data Paradig. 2011, 3, 4–21. [Google Scholar] [CrossRef]
- Han, H.; Wang, W.; Mao, B. Borderline-SMOTE: A New Over-Sampling Method in Imbalanced Data Sets Learning. In Lecture Notes in Computer Science, Proceedings of the International Conference on Intelligent Computing on Advances in Intelligent Computing (ICIC 2005), Hefei, China, 23–26 August 2005; Huang, D., Zhang, X., Huang, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; Volume 3644, pp. 878–887. [Google Scholar] [CrossRef]
- Bunkhumpornpat, C.; Sinapiromsaran, K.; Lursinsap, C. Safe-Level-SMOTE: Safe-Level-Synthetic Minority Over-Sampling TEchnique for Handling the Class Imbalanced Problem. In Lecture Notes in Computer Science, Proceedings of the 13th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining (PAKDD 2009), Bangkok, Thailand, 27–30 April 2009; Theeramunkong, T., Kijsirikul, B., Cercone, N., Ho, T.B., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; Volume 5476, pp. 475–482. [Google Scholar] [CrossRef]
- Prachuabsupakij, W.; Soonthornphisaj, N. Clustering and combined sampling approaches for multi-class imbalanced data classification. In Advances in Information Technology and Industry Applications; Springer: Berlin/Heidelberg, Germany, 2012; pp. 717–724. [Google Scholar]
- Zhang, Q.; Zhu, C.; Yang, L.T.; Chen, Z.; Zhao, L.; Li, P. An Incremental CFS Algorithm for Clustering Large Data in Industrial Internet of Things. IEEE Trans. Ind. Inform. 2017, 13, 1193–1201. [Google Scholar] [CrossRef]
- Macqueen, J. Some Methods for Classification and Analysis of MultiVariate Observations. In Proceedings of the Berkeley Symposium on Mathematical Statistics and Probability; University of California Press: Berkeley, CA, USA, 1967; pp. 281–297. [Google Scholar]
- Sampath, S.; Ramya, B. Rough ISODATA Algorithm. Int. J. Fuzzy Syst. Appl. 2013, 3, 1–14. [Google Scholar] [CrossRef]
- Kaufman, L.; Rousseeuw, P.J. Finding Groups in Data: An Introduction to Cluster Analysis; John Wiley: Hoboken, NJ, USA, 1990. [Google Scholar]
- Xu, R.; Wunsch, D. Survey of clustering algorithms. IEEE Trans. Neural Netw. 2005, 16, 645–678. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Chen, X.; Chen, C.; Zhang, J.; Xiang, Y.; Zhou, W. On Addressing the Imbalance Problem: A Correlated KNN Approach for Network Traffic Classification. In Lecture Notes in Computer Science, Proceedings of the 8th International Conference on Network and System Security (NSS 2014), Xi’an, China, 15–17 October 2014; Au, M.H., Carminati, B., Kuo, C.J., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; Volume 8792, pp. 138–151. [Google Scholar] [CrossRef]
- Mennicke, J.; Münzenmayer, C.; Schmid, U. Classifier Learning for Imbalanced Data—A Comparison of kNN, SVM, and Decision Tree Learning; VDM: Saarbrücken, Germany, 2008. [Google Scholar]
- Brumen, B.; Rozman, I.; Hericko, M.; Cernezel, A.; Hölbl, M. Best-Fit Learning Curve Model for the C4.5 Algorithm. Informatica 2014, 25, 385–399. [Google Scholar] [CrossRef]
- Albisua, I.; Arbelaitz, O.; Gurrutxaga, I.; Muguerza, J.; Pérez, J.M. C4.5 Consolidation Process: An Alternative to Intelligent Oversampling Methods in Class Imbalance Problems. In Lecture Notes in Computer Science, Proceedings of the 14th Conference of the Spanish Association for Artificial Intelligence Advances in Artificial Intelligence (CAEPIA 2011), La Laguna, Spain, 7–11 November 2011; Lozano, J.A., Gámez, J.A., Moreno, J.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; Volume 7023, pp. 74–83. [Google Scholar] [CrossRef]
- Guo, H.; Zhi, W.; Liu, H.; Xu, M. Imbalanced Learning Based on Logistic Discrimination. Comp. Int. Neurosci. 2016, 2016, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Hu, B.; Príncipe, J.C. Robust bounded logistic regression in the class imbalance problem. In Proceedings of the 2016 International Joint Conference on Neural Networks (IJCNN 2016), Vancouver, BC, Canada, 24–29 July 2016; pp. 1434–1441. [Google Scholar] [CrossRef]
- Zhang, C.; Guo, J.; Lu, J. Research on Classification Method of High-Dimensional Class-Imbalanced Data Sets Based on SVM. In Proceedings of the Second IEEE International Conference on Data Science in Cyberspace (DSC 2017), Shenzhen, China, 26–29 June 2017; pp. 60–67. [Google Scholar] [CrossRef]
- Yan, Q.; Xia, S.; Meng, F. Optimizing Cost-Sensitive SVM for Imbalanced Data: Connecting Cluster to Classification. arXiv, 2017; arXiv:1702.01504. [Google Scholar]
- Wang, S.; Liu, W.; Wu, J.; Cao, L.; Meng, Q.; Kennedy, P.J. Training deep neural networks on imbalanced data sets. In Proceedings of the 2016 International Joint Conference on Neural Networks (IJCNN 2016), Vancouver, BC, Canada, 24–29 July 2016; pp. 4368–4374. [Google Scholar] [CrossRef]
- Dorado-Moreno, M.; Pérez-Ortiz, M.; Gutiérrez, P.A.; Ciria, R.; Briceño, J.; Hervás-Martínez, C. Dynamically weighted evolutionary ordinal neural network for solving an imbalanced liver transplantation problem. Artif. Intell. Med. 2017, 77, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Yang, L.T.; Chen, Z.; Li, P. A survey on deep learning for big data. Inf. Fusion 2018, 42, 146–157. [Google Scholar] [CrossRef]
- Swezey, R.M.E.; Shiramatsu, S.; Ozono, T.; Shintani, T. An Improvement for Naive Bayes Text Classification Applied to Online Imbalanced Crowdsourced Corpuses. In Modern Advances in Intelligent Systems and Tools; Studies in Computational Intelligence; Ding, W., Jiang, H., Ali, M., Li, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; Volume 431, pp. 147–152. [Google Scholar] [CrossRef]
- Hang, Y.; Fong, S.; Wong, R.K.; Sun, G. Optimizing Classification Decision Trees by Using Weighted Naïve Bayes Predictors to Reduce the Imbalanced Class Problem in Wireless Sensor Network. Int. J. Distrib. Sens. Netw. 2013, 9, 460641. [Google Scholar] [CrossRef]
- Da Cunha Rodrigues, C.M. Predictive Modeling using Railway Event Alarms System. arXiv, 2015; arXiv:1106.4557. [Google Scholar]
- Alcalá-Fdez, J.; Fernández, A.; Luengo, J.; Derrac, J.; García, S. KEEL Data-Mining Software Tool: Data Set Repository, Integration of Algorithms and Experimental Analysis Framework. Multiple-Valued Log. Soft Comput. 2011, 17, 255–287. [Google Scholar]
- Demsar, J. Statistical Comparisons of Classifiers over Multiple Data Sets. J. Mach. Learn. Res. 2006, 7, 1–30. [Google Scholar]
- Altman, N.S. An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression. Am. Stat. 1992, 46, 175–185. [Google Scholar] [Green Version]
- Wu, X.; Yang, J.; Wang, S. Tea category identification based on optimal wavelet entropy and weighted k-Nearest Neighbors algorithm. Multimed. Tools Appl. 2018, 77, 3745–3759. [Google Scholar] [CrossRef]
- Quinlan, J.R. C4.5: Programs for Machine Learning; Morgan Kaufmann: Burlington, MA, USA, 1993. [Google Scholar]
- Witten, L.H.; Frank, E.; Hall, M.A. Data Mining: Practical Machine Learning Tools and Techniques, 3rd ed.; ACM Sigmod Record: New York, NY, USA, 2011; Volume 31, pp. 76–77. [Google Scholar]
- Seal, H.L. Estimation of the probability of an event as a function of several independent variables. Biometrika 1967, 54, 167–179. [Google Scholar]
- Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Webb, G.I.; Boughton, J.R.; Wang, Z. Not So Naive Bayes: Aggregating One-Dependence Estimators. Mach. Learn. 2005, 58, 5–24. [Google Scholar] [CrossRef] [Green Version]
- García, S.; Fernández, A.; Luengo, J.; Herrera, F. Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power. Inf. Sci. 2010, 180, 2044–2064. [Google Scholar] [CrossRef]
Predicted as Positive | Predicted as Negative | |
---|---|---|
Actually Positive | True Positives (TP) | False Negatives (FN) |
Actually Negative | False Positives (FP) | True Negatives (TN) |
ID | Data Set | Instances | Attributes | IR (Imbalance Ratio) |
---|---|---|---|---|
id1 | segment0 | 2308 | 19 | 6.02 |
id2 | yeast-0-3-5-9_vs_7-8 | 506 | 8 | 9.12 |
id3 | yeast-0-2-5-6_vs_3-7-8-9 | 1004 | 8 | 9.14 |
id4 | ecoli-0-4-6_vs_5 | 203 | 6 | 9.15 |
id5 | ecoli-0-3-4-7_vs_5-6 | 257 | 7 | 9.28 |
id6 | ecoli-0-1-4-7_vs_2-3-5-6 | 336 | 7 | 10.59 |
id7 | led7digit-0-2-4-5-6-7-8-9_vs_1 | 443 | 7 | 10.97 |
id8 | glass-0-6_vs_5 | 108 | 9 | 11.00 |
id9 | glass-0-1-4-6_vs_2 | 205 | 9 | 11.06 |
id10 | ecoli-0-1-4-7_vs_5-6 | 332 | 6 | 12.28 |
id11 | shuttle-c0-vs-c4 | 1829 | 9 | 13.87 |
id12 | page-blocks-1-3_vs_4 | 472 | 10 | 15.86 |
id13 | zoo-3 | 101 | 16 | 19.20 |
id14 | shuttle-6_vs_2-3 | 230 | 9 | 22.00 |
id15 | flare-F | 1066 | 11 | 23.79 |
id16 | car-good | 1728 | 6 | 24.04 |
id17 | poker-9_vs_7 | 244 | 10 | 29.50 |
Algorithm | ID1 | ID2 | ID3 | ID4 | ID5 | ID6 | ID7 | ID8 | ID9 |
---|---|---|---|---|---|---|---|---|---|
DPS-KNN | 0.9955(4.0) | 0.5600(4.0) | 0.6213(6.0) | 0.8450(4.5) | 0.8200(4.0) | 0.8183(1.0) | 0.8525(2.0) | 0.7600(17.0) | 0.4400(7.0) |
KNN | 0.9875(10.0) | 0.4220(10.0) | 0.5560(12.0) | 0.8450(4.5) | 0.7450(21.0) | 0.7333(14.0) | 0.8008(20.0) | 0.6000(26.0) | 0.1250(24.0) |
DP-KNN | 0.9939(6.0) | 0.4360(9.0) | 0.5598(11.0) | 0.8250(8.0) | 0.7550(19.0) | 0.7567(8.0) | 0.8592(1.0) | 0.6600(22.5) | 0.2650(19.0) |
S-KNN | 0.9924(8.0) | 0.5120(5.0) | 0.6271(5.0) | 0.8500(2.0) | 0.7950(11.0) | 0.8017(2.0) | 0.8333(5.5) | 0.7300(19.0) | 0.2000(21.0) |
MWMO-KNN | 0.9897(9.0) | 0.4660(6.5) | 0.5864(8.0) | 0.8450(4.5) | 0.7667(17.0) | 0.7583(7.0) | 0.8058(17.0) | 0.7500(18.0) | 0.2050(20.0) |
DPS-C4.5 | 0.9830(15.0) | 0.3940(12.0) | 0.5239(16.0) | 0.8100(11.0) | 0.7933(12.0) | 0.7883(3.0) | 0.8283(9.5) | 0.9000(3.0) | 0.3800(10.0) |
C4.5 | 0.9669(26.0) | 0.2040(28.0) | 0.3759(24.0) | 0.5800(28.0) | 0.5917(27.0) | 0.6550(22.0) | 0.7642(26.0) | 0.9000(3.0) | 0.3100(16.5) |
DP-C4.5 | 0.9772(20.5) | 0.2600(20.0) | 0.3971(23.0) | 0.8200(9.5) | 0.7917(13.0) | 0.7417(11.0) | 0.8283(9.5) | 0.9000(3.0) | 0.2700(18.0) |
S-C4.5 | 0.9854(11.0) | 0.3660(13.0) | 0.4978(18.0) | 0.6950(24.5) | 0.7500(20.0) | 0.69671(6.0) | 0.7942(22.0) | 0.9000(3.0) | 0.5000(5.0) |
MWMO-C4.5 | 0.9781(19.0) | 0.2940(17.0) | 0.4698(21.0) | 0.6300(26.0) | 0.6333(26.0) | 0.6517(23.0) | 0.7692(25.0) | 0.9000(3.0) | 0.3700(11.0) |
DPS-LR | 0.9589(27.0) | 0.4660(6.5) | 0.5530(13.0) | 0.8450(4.5) | 0.8600(2.0) | 0.7633(6.0) | 0.8342(4.0) | 0.8200(12.0) | 0.4250(8.0) |
LR | 0.9678(25.0) | 0.1940(29.0) | 0.4144(22.0) | 0.7500(21.5) | 0.7833(14.0) | 0.6700(21.0) | 0.8017(18.5) | 0.8100(13.0) | 0.0100(27.0) |
DP-LR | 0.9151(28.0) | 0.3620(14.0) | 0.3491(26.0) | 0.8300(7.0) | 0.8833(1.0) | 0.7767(4.0) | 0.8333(5.5) | 0.8300(10.0) | 0.3500(12.0) |
S-LR | 0.6192(30.0) | 0.2620(19.0) | 0.5742(10.0) | 0.7750(19.0) | 0.8083(7.5) | 0.7383(12.5) | 0.8225(13.0) | 0.6100(25.0) | 0.3400(14.0) |
MWMO-LR | 0.7942(29.0) | 0.2520(21.0) | 0.5309(15.0) | 0.7650(20.0) | 0.7600(18.0) | 0.6750(20.0) | 0.7967(21.0) | 0.7800(14.5) | 0.1850(22.0) |
DPS-SVM | 0.9842(14.0) | 0.4060(11.0) | 0.5799(9.0) | 0.8600(1.0) | 0.8033(9.0) | 0.7500(9.5) | 0.8283(9.5) | 0.7800(14.5) | 0.1300(23.0) |
SVM | 0.9803(18.0) | 0.2200(24.5) | 0.1157(30.0) | 0.6950(24.5) | 0.6400(25.0) | 0.2300(30.0) | 0.7925(23.0) | 0.0000(30.0) | 0.0000(29.0) |
DP-SVM | 0.9818(16.0) | 0.1880(30.0) | 0.2163(29.0) | 0.8050(12.0) | 0.7117(22.0) | 0.5717(27.0) | 0.8283(9.5) | 0.7100(20.0) | 0.0300(25.0) |
S-SVM | 0.9848(12.0) | 0.2200(24.5) | 0.6043(7.0) | 0.7950(14.0) | 0.8283(3.0) | 0.6933(17.5) | 0.8250(12.0) | 0.1900(28.0) | 0.0000(29.0) |
MWMO-SVM | 0.9845(13.0) | 0.2200(24.5) | 0.3690(25.0) | 0.7500(21.5) | 0.6683(24.0) | 0.5333(29.0) | 0.8017(18.5) | 0.1700(29.0) | 0.0000(29.0) |
DPS-NN | 0.9964(2.0) | 0.5840(3.0) | 0.7784(3.0) | 0.7900(16.0) | 0.8000(10.0) | 0.7500(9.5) | 0.8358(3.0) | 0.8600(6.5) | 0.6200(2.0) |
NN | 0.9936(7.0) | 0.3380(15.0) | 0.5518(14.0) | 0.8000(13.0) | 0.8183(5.0) | 0.6883(19.0) | 0.8192(15.5) | 0.8400(8.0) | 0.0200(26.0) |
DP-NN | 0.9961(3.0) | 0.4460(8.0) | 0.6489(4.0) | 0.7850(18.0) | 0.7783(15.0) | 0.7233(15.0) | 0.8308(7.0) | 0.8600(6.5) | 0.5500(4.0) |
S-NN | 0.9988(1.0) | 0.6680(1.0) | 0.9293(1.0) | 0.7900(16.0) | 0.8117(6.0) | 0.7383(12.5) | 0.8200(14.0) | 0.8300(10.0) | 0.7350(1.0) |
MWMO-NN | 0.9951(5.0) | 0.5980(2.0) | 0.8086(2.0) | 0.7900(16.0) | 0.8083(7.5) | 0.6933(17.5) | 0.8192(15.5) | 0.8300(10.0) | 0.5850(3.0) |
DPS-NB | 0.9811(17.0) | 0.3260(16.0) | 0.3091(28.0) | 0.8200(9.5) | 0.7733(16.0) | 0.7683(5.0) | 0.7575(27.0) | 0.7700(16.0) | 0.3400(14.0) |
NB | 0.9748(22.0) | 0.2180(27.0) | 0.5066(17.0) | 0.4400(30.0) | 0.5017(30.0) | 0.5550(28.0) | 0.7525(28.0) | 0.4100(27.0) | 0.3400(14.0) |
DP-NB | 0.9741(23.0) | 0.2760(18.0) | 0.3161(27.0) | 0.6250(27.0) | 0.5583(28.0) | 0.6400(25.0) | 0.7742(24.0) | 0.6800(21.0) | 0.3100(16.5) |
S-NB | 0.9772(20.5) | 0.2200(24.5) | 0.4946(19.0) | 0.7300(23.0) | 0.7050(23.0) | 0.6450(24.0) | 0.7258(29.0) | 0.6600(22.5) | 0.4950(6.0) |
MWMO-NB | 0.9687(24.0) | 0.2380(22.0) | 0.4818(20.0) | 0.4450(29.0) | 0.5167(29.0) | 0.5750(26.0) | 0.6817(30.0) | 0.6300(24.0) | 0.4150(9.0) |
algorithm | id10 | id11 | id12 | id13 | id14 | id15 | id16 | id17 | AVE |
DPS-KNN | 0.8433(1.0) | 0.9944(11.0) | 0.9617(12.0) | 0.3200(9.5) | 0.8400(25.5) | 0.5325(4.0) | 0.9705(4.0) | 0.6500(2.5) | 0.7544(7.0) |
KNN | 0.7683(17.5) | 0.9911(22.5) | 0.9417(15.0) | 0.2900(17.0) | 0.9000(16.5) | 0.1345(27.0) | 0.3410(24.0) | 0.5000(15.0) | 0.6283(18.6) |
DP-KNN | 0.7683(17.5) | 0.9919(17.0) | 0.9367(16.0) | 0.3200(9.5) | 0.7200(28.0) | 0.3525(8.5) | 0.8438(9.0) | 0.5600(10.0) | 0.6826(14.2) |
S-KNN | 0.8233(4.0) | 0.9911(22.5) | 0.9717(7.0) | 0.3000(14.5) | 0.9100(12.5) | 0.2180(17.0) | 0.5421(21.0) | 0.6500(2.5) | 0.6910(11.7) |
MWMO-KNN | 0.7817(13.5) | 0.9919(17.0) | 0.9633(11.0) | 0.3000(14.5) | 0.9400(8.0) | 0.2100(18.0) | 0.5374(22.0) | 0.6300(5.0) | 0.6871(13.8) |
DPS-C4.5 | 0.8200(5.0) | 1.0000(4.5) | 0.9833(5.5) | 0.3800(1.5) | 0.9300(10.0) | 0.3525(8.5) | 0.9195(6.0) | 0.6200(6.5) | 0.7298(8.8) |
C4.5 | 0.6217(26.0) | 1.0000(4.5) | 0.9933(1.5) | 0.0000(30.0) | 1.0000(3.0) | 0.0020(30.0) | 0.0000(30.0) | 0.0300(29.0) | 0.5291(20.8) |
DP-C4.5 | 0.8067(8.0) | 1.0000(4.5) | 0.9833(5.5) | 0.3800(1.5) | 0.9300(10.0) | 0.1710(20.0) | 0.7807(11.0) | 0.5900(8.0) | 0.6840(11.7) |
S-C4.5 | 0.7083(22.0) | 1.0000(4.5) | 0.9933(1.5) | 0.3000(14.5) | 1.0000(3.0) | 0.1430(26.0) | 0.7502(13.0) | 0.1600(22.0) | 0.6612(14.8) |
MWMO-C4.5 | 0.6417(25.0) | 1.0000(4.5) | 0.9433(14.0) | 0.1300(28.0) | 1.0000(3.0) | 0.0805(28.0) | 0.7238(14.0) | 0.2100(20.5) | 0.6133(18.3) |
DPS-LR | 0.8183(6.0) | 0.9853(26.0) | 0.9483(13.0) | 0.3200(9.5) | 0.8400(25.5) | 0.3510(10.0) | 0.7081(15.0) | 0.5400(12.5) | 0.7080(11.4) |
LR | 0.7633(19.0) | 0.7231(30.0) | 0.5717(26.0) | 0.2000(26.5) | 0.9900(6.0) | 0.1575(24.0) | 0.2788(27.0) | 0.1100(25.0) | 0.5409(21.8) |
DP-LR | 0.8300(3.0) | 0.9846(27.0) | 0.9317(17.0) | 0.3300(6.5) | 0.8600(24.0) | 0.2580(14.0) | 0.6476(16.0) | 0.6200(6.5) | 0.6818(12.5) |
S-LR | 0.8333(2.0) | 0.7507(29.0) | 0.7100(21.0) | 0.2100(23.0) | 0.8900(21.0) | 0.2415(15.0) | 0.5671(19.0) | 0.2100(20.5) | 0.5860(17.0) |
MWMO-LR | 0.7817(13.5) | 0.7561(28.0) | 0.6283(23.0) | 0.2200(20.0) | 0.9000(16.5) | 0.2015(19.0) | 0.4986(23.0) | 0.2300(19.0) | 0.5783(19.4) |
DPS-SVM | 0.8083(7.0) | 0.9887(25.0) | 0.8600(20.0) | 0.3400(4.0) | 0.8800(23.0) | 0.3205(11.0) | 0.9240(5.0) | 0.6500(2.5) | 0.6996(11.8) |
SVM | 0.5250(28.0) | 0.9919(17.0) | 0.4200(30.0) | 0.2100(23.0) | 0.7000(30.0) | 0.0190(29.0) | 0.0960(28.0) | 0.0000(30.0) | 0.3903(26.2) |
DP-SVM | 0.7150(21.0) | 0.9895(24.0) | 0.6433(22.0) | 0.3400(4.0) | 0.7800(27.0) | 0.1630(21.0) | 0.7510(12.0) | 0.5700(9.0) | 0.5879(19.3) |
S-SVM | 0.7900(10.0) | 0.9919(17.0) | 0.4233(29.0) | 0.2100(23.0) | 0.8900(21.0) | 0.1580(23.0) | 0.5452(20.0) | 0.0700(28.0) | 0.5423(18.8) |
MWMO-SVM | 0.6683(23.0) | 0.9919(17.0) | 0.4350(28.0) | 0.2100(23.0) | 0.9000(16.5) | 0.1540(25.0) | 0.6074(27.0) | 0.1000(26.5) | 0.5037(22.9) |
DPS-NN | 0.7933(9.0) | 0.9919(17.0) | 0.9850(4.0) | 0.3200(9.5) | 0.9100(12.5) | 0.4730(5.0) | 0.9157(7.0) | 0.5500(11.0) | 0.7620(8.2) |
NN | 0.7700(16.0) | 0.9919(17.0) | 0.9667(3.0) | 0.3000(6.5) | 0.9000(21.0) | 0.1585(12.0) | 1.0000(8.0) | 0.4000(12.5) | 0.6680(10.4) |
DP-NN | 0.7867(11.0) | 0.9919(17.0) | 0.9917(3.0) | 0.3300(6.5) | 0.8900(21.0) | 0.3025(12.0) | 0.8983(8.0) | 0.5400(12.5) | 0.7264(10.4) |
S-NN | 0.7833(12.0) | 0.9919(17.0) | 0.9667(9.0) | 0.2300(18.5) | 0.9000(16.5) | 0.4220(6.0) | 0.9926(2.0) | 0.2800(17.5) | 0.7581(9.9) |
MWMO-NN | 0.7783(15.0) | 0.9928(12.0) | 0.9667(9.0) | 0.2300(18.5) | 0.9000(16.5) | 0.2755(13.0) | 0.9724(3.0) | 0.2800(17.5) | 0.7249(10.9) |
DPS-NB | 0.7383(20.0) | 0.9992(9.5) | 0.9283(18.5) | 0.3400(4.0) | 1.0000(3.0) | 0.3775(7.0) | 0.8000(10.0) | 0.6500(2.5) | 0.6870(12.5) |
NB | 0.4833(30.0) | 1.0000(4.5) | 0.5667(27.0) | 0.1000(29.0) | 0.7100(29.0) | 0.6290(3.0) | 0.0074(29.0) | 0.1000(26.5) | 0.4879(22.6) |
DP-NB | 0.5567(27.0) | 0.9992(9.5) | 0.9283(18.5) | 0.3100(12.0) | 1.0000(3.0) | 0.2265(16.0) | 0.5940(18.0) | 0.5200(14.0) | 0.6052(18.1) |
S-NB | 0.6517(24.0) | 1.0000(4.5) | 0.5950(25.0) | 0.2100(23.0) | 0.9300(10.0) | 0.6770(1.0) | 0.2960(26.0) | 0.1500(23.0) | 0.5978(18.2) |
MWMO-NB | 0.5083(29.0) | 1.0000(4.5) | 0.5967(24.0) | 0.2000(26.5) | 0.9800(7.0) | 0.6465(2.0) | 0.3100(25.0) | 0.1400(24.0) | 0.5490(19.5) |
Algorithm | ID1 | ID2 | ID3 | ID4 | ID5 | ID6 | ID7 | ID8 | ID9 |
---|---|---|---|---|---|---|---|---|---|
DPS-KNN | 0.9964(2.0) | 0.6876(1.0) | 0.7533(3.0) | 0.8936(5.0) | 0.8764(6.0) | 0.8769(1.0) | 0.8905(4.0) | 0.7474(17.0) | 0.4837(6.0) |
KNN | 0.9923(10.0) | 0.5950(10.0) | 0.7266(8.0) | 0.9067(2.0) | 0.8361(17.0) | 0.8261(11.0) | 0.8743(19.0) | 0.5953(25.0) | 0.1606(23.0) |
DP-KNN | 0.9959(3.0) | 0.6093(7.0) | 0.7278(7.0) | 0.8772(7.0) | 0.8353(18.0) | 0.8406(6.0) | 0.9000(1.0) | 0.6505(23.0) | 0.3008(19.0) |
S-KNN | 0.9941(8.0) | 0.6553(4.0) | 0.7628(1.0) | 0.9080(1.0) | 0.8691(8.0) | 0.8650(2.0) | 0.8907(2.0) | 0.7238(19.0) | 0.2492(20.0) |
MWMO-KNN | 0.9929(9.0) | 0.6292(6.0) | 0.7385(4.0) | 0.9061(3.0) | 0.8517(14.0) | 0.8415(5.0) | 0.8776(17.0) | 0.7443(18.0) | 0.2434(21.0) |
DPS-C4.5 | 0.9887(17.0) | 0.5576(12.0) | 0.6826(15.0) | 0.8526(15.0) | 0.8417(16.0) | 0.8521(3.0) | 0.8865(12.0) | 0.8844(4.0) | 0.4255(9.0) |
C4.5 | 0.9813(21.0) | 0.3501(29.0) | 0.5926(23.0) | 0.6726(28.0) | 0.6913(27.0) | 0.7713(22.0) | 0.8448(25.0) | 0.8949(2.5) | 0.3702(14.0) |
DP-C4.5 | 0.9859(19.0) | 0.4279(18.0) | 0.5989(22.0) | 0.8583(13.0) | 0.8501(15.0) | 0.8295(8.0) | 0.8876(9.0) | 0.8839(5.0) | 0.3069(17.0) |
S-C4.5 | 0.9909(14.0) | 0.5492(13.0) | 0.6805(16.0) | 0.7491(25.0) | 0.8153(21.0) | 0.7873(19.0) | 0.8669(22.0) | 0.8949(2.5) | 0.5587(4.0) |
MWMO-C4.5 | 0.9870(18.0) | 0.4544(17.0) | 0.6598(19.0) | 0.7086(26.0) | 0.7174(26.0) | 0.7594(23.0) | 0.8519(24.0) | 0.8954(1.0) | 0.4222(10.0) |
DPS-LR | 0.9704(22.0) | 0.6021(8.0) | 0.6934(12.0) | 0.8865(6.0) | 0.8891(2.0) | 0.8267(10.0) | 0.8888(8.0) | 0.8132(12.0) | 0.4585(8.0) |
LR | 0.9820(20.0) | 0.3519(28.0) | 0.6267(20.0) | 0.8228(22.0) | 0.8544(12.0) | 0.7793(20.0) | 0.8771(18.0) | 0.7934(13.0) | 0.0092(27.0) |
DP-LR | 0.9513(24.0) | 0.5367(14.0) | 0.5572(24.0) | 0.8731(8.0) | 0.9024(1.0) | 0.8439(4.0) | 0.8840(16.0) | 0.8222(11.0) | 0.3910(11.0) |
S-LR | 0.7803(30.0) | 0.4246(20.0) | 0.7362(5.0) | 0.8329(19.0) | 0.8621(10.0) | 0.8271(9.0) | 0.8875(10.0) | 0.5940(26.0) | 0.3846(12.0) |
MWMO-LR | 0.8801(29.0) | 0.4129(21.0) | 0.7076(11.0) | 0.8289(20.0) | 0.8272(20.0) | 0.7767(21.0) | 0.8730(21.0) | 0.7599(15.0) | 0.2072(22.0) |
DPS-SVM | 0.9911(13.0) | 0.5647(11.0) | 0.7186(10.0) | 0.9021(4.0) | 0.8664(9.0) | 0.8376(7.0) | 0.8894(7.0) | 0.7747(14.0) | 0.1522(24.0) |
SVM | 0.9895(16.0) | 0.3795(25.0) | 0.2841(30.0) | 0.7858(24.0) | 0.7580(25.0) | 0.3294(30.0) | 0.8643(23.0) | 0.0000(30.0) | 0.0000(29.0) |
DP-SVM | 0.9900(15.0) | 0.3482(30.0) | 0.4180(29.0) | 0.8619(11.0) | 0.8027(22.0) | 0.6996(26.0) | 0.8906(3.0) | 0.7057(20.0) | 0.0339(25.0) |
S-SVM | 0.9918(11.0) | 0.3795(25.0) | 0.7586(2.0) | 0.8589(12.0) | 0.8885(3.0) | 0.8016(16.0) | 0.8869(11.0) | 0.1900(28.0) | 0.0000(29.0) |
MWMO-SVM | 0.9916(12.0) | 0.3821(23.0) | 0.5427(25.0) | 0.8288(21.0) | 0.7685(24.0) | 0.6332(29.0) | 0.8736(20.0) | 0.1700(29.0) | 0.0000(29.0) |
DPS-NN | 0.9953(6.0) | 0.6742(2.0) | 0.6699(18.0) | 0.8459(18.0) | 0.8619(11.0) | 0.8251(12.0) | 0.8902(5.0) | 0.8536(7.0) | 0.6290(2.0) |
NN | 0.9955(4.5) | 0.5132(15.0) | 0.7217(9.0) | 0.8628(10.0) | 0.8835(4.0) | 0.7961(18.0) | 0.8844(14.0) | 0.8354(8.0) | 0.0232(26.0) |
DP-NN | 0.9955(4.5) | 0.5975(9.0) | 0.7330(6.0) | 0.8477(17.0) | 0.8527(13.0) | 0.8082(15.0) | 0.8899(6.0) | 0.8542(6.0) | 0.5758(3.0) |
S-NN | 0.9971(1.0) | 0.6633(3.0) | 0.4760(28.0) | 0.8557(14.0) | 0.8806(5.0) | 0.8249(13.0) | 0.8847(13.0) | 0.8243(10.0) | 0.6872(1.0) |
MWMO-NN | 0.9950(7.0) | 0.6306(5.0) | 0.6030(21.0) | 0.8522(16.0) | 0.8741(7.0) | 0.7976(17.0) | 0.8843(15.0) | 0.8259(9.0) | 0.5482(5.0) |
DPS-NB | 0.9493(25.0) | 0.4809(16.0) | 0.5258(27.0) | 0.8643(9.0) | 0.8351(19.0) | 0.8097(14.0) | 0.8335(27.0) | 0.7537(16.0) | 0.3468(15.0) |
NB | 0.9242(27.0) | 0.3751(27.0) | 0.6915(13.0) | 0.5413(30.0) | 0.6044(30.0) | 0.6592(28.0) | 0.8088(28.0) | 0.4100(27.0) | 0.3047(18.0) |
DP-NB | 0.9628(23.0) | 0.4259(19.0) | 0.5296(26.0) | 0.7025(27.0) | 0.6465(28.0) | 0.7189(25.0) | 0.8418(26.0) | 0.6679(21.0) | 0.3145(16.0) |
S-NB | 0.9038(28.0) | 0.3795(25.0) | 0.6829(14.0) | 0.8030(23.0) | 0.7969(23.0) | 0.7505(24.0) | 0.7954(29.0) | 0.6595(22.0) | 0.4762(7.0) |
MWMO-NB | 0.9320(26.0) | 0.4009(22.0) | 0.6714(17.0) | 0.5567(29.0) | 0.6064(29.0) | 0.6939(27.0) | 0.7750(30.0) | 0.6290(24.0) | 0.3818(13.0) |
algorithm | id10 | id11 | id12 | id13 | id14 | id15 | id16 | id17 | AVE |
DPS-KNN | 0.8878(1.0) | 0.9971(11.0) | 0.9768(11.5) | 0.3132(11.0) | 0.8391(25.0) | 0.6782(4.0) | 0.9058(8.0) | 0.6465(2.0) | 0.7912(7.0) |
KNN | 0.8428(17.0) | 0.9955(22.5) | 0.9666(13.0) | 0.2894(17.0) | 0.9000(14.5) | 0.2482(27.0) | 0.5499(24.0) | 0.5000(14.0) | 0.6944(16.1) |
DP-KNN | 0.8380(18.0) | 0.9959(15.0) | 0.9628(16.0) | 0.3139(10.0) | 0.7193(28.0) | 0.5343(8.0) | 0.8794(9.0) | 0.5591(8.0) | 0.7377(11.9) |
S-KNN | 0.8744(5.0) | 0.9955(22.5) | 0.9837(5.0) | 0.2971(14.0) | 0.9100(12.5) | 0.3642(17.0) | 0.7089(21.0) | 0.6493(1.0) | 0.7471(9.6) |
MWMO-KNN | 0.8499(15.0) | 0.9959(15.0) | 0.9793(9.0) | 0.2965(15.0) | 0.9400(8.0) | 0.3380(19.0) | 0.7076(22.0) | 0.6291(4.0) | 0.7389(12.0) |
DPS-C4.5 | 0.8712(6.0) | 1.0000(3.0) | 0.9777(10.0) | 0.3727(1.5) | 0.9238(10.0) | 0.5125(10.0) | 0.9303(7.0) | 0.5804(6.0) | 0.7729(9.2) |
C4.5 | 0.7243(26.0) | 0.9997(7.0) | 0.9935(1.5) | 0.0000(30.0) | 0.9977(1.0) | 0.0044(30.0) | 0.0000(30.0) | 0.0296(29.0) | 0.5834(20.4) |
DP-C4.5 | 0.8658(8.0) | 1.0000(3.0) | 0.9768(11.5) | 0.3727(1.5) | 0.9231(11.0) | 0.2907(20.0) | 0.8522(12.0) | 0.5569(9.0) | 0.7334(11.9) |
S-C4.5 | 0.8055(21.0) | 1.0000(3.0) | 0.9935(1.5) | 0.3000(13.0) | 0.9975(2.5) | 0.2596(26.0) | 0.8540(11.0) | 0.1581(22.0) | 0.7212(13.9) |
MWMO-C4.5 | 0.7589(24.0) | 1.0000(3.0) | 0.9638(15.0) | 0.1300(28.0) | 0.9975(2.5) | 0.1442(28.0) | 0.8251(14.0) | 0.2083(21.0) | 0.6755(17.6) |
DPS-LR | 0.8796(3.0) | 0.9924(26.0) | 0.9639(14.0) | 0.3154(9.0) | 0.8389(26.0) | 0.5134(9.0) | 0.8153(15.0) | 0.5297(13.0) | 0.7575(11.9) |
LR | 0.8485(16.0) | 0.8448(30.0) | 0.7023(26.0) | 0.1983(26.0) | 0.9870(6.0) | 0.2768(23.0) | 0.4776(27.0) | 0.1100(25.0) | 0.6201(21.1) |
DP-LR | 0.8755(4.0) | 0.9921(27.0) | 0.9494(17.0) | 0.3220(7.0) | 0.8568(24.0) | 0.4041(14.0) | 0.7784(16.0) | 0.6107(5.0) | 0.7383(13.4) |
S-LR | 0.8921(19.0) | 0.8575(28.0) | 0.7996(21.0) | 0.2071(24.0) | 0.8888(22.0) | 0.4030(15.0) | 0.7304(19.0) | 0.2087(20.0) | 0.6657(18.2) |
MWMO-LR | 0.8578(13.0) | 0.8561(29.0) | 0.7474(23.0) | 0.2182(20.0) | 0.8972(19.0) | 0.3422(18.0) | 0.6758(23.0) | 0.2287(19.0) | 0.6528(20.2) |
DPS-SVM | 0.8831(2.0) | 0.9942(25.0) | 0.8971(20.0) | 0.3360(3.5) | 0.8793(23.0) | 0.4895(11.0) | 0.9386(5.0) | 0.6441(3.0) | 0.7505(11.3) |
SVM | 0.6652(27.0) | 0.9959(15.0) | 0.5599(30.0) | 0.2077(22.0) | 0.7000(30.0) | 0.0385(29.0) | 0.2035(28.0) | 0.0000(30.0) | 0.4566(26.1) |
DP-SVM | 0.8182(20.0) | 0.9946(24.0) | 0.7605(22.0) | 0.3360(3.5) | 0.7793(27.0) | 0.2789(22.0) | 0.8415(13.0) | 0.5661(7.0) | 0.6545(18.8) |
S-SVM | 0.8710(7.0) | 0.9958(18.5) | 0.5617(29.0) | 0.2077(22.0) | 0.8900(20.5) | 0.2827(21.0) | 0.7112(20.0) | 0.0700(28.0) | 0.6086(17.8) |
MWMO-SVM | 0.7653(23.0) | 0.9958(18.5) | 0.5695(28.0) | 0.2077(22.0) | 0.9000(14.5) | 0.2715(25.0) | 0.7540(17.0) | 0.1000(26.0) | 0.5738(22.7) |
DPS-NN | 0.8604(11.0) | 0.9957(20.0) | 0.9884(4.0) | 0.3172(8.0) | 0.9100(12.5) | 0.6184(5.0) | 0.9439(4.0) | 0.5450(10.0) | 0.7897(9.1) |
NN | 0.8552(14.0) | 0.9959(15.0) | 0.9802(6.5) | 0.2954(16.0) | 0.8989(17.5) | 0.2726(24.0) | 0.9994(1.0) | 0.4000(16.0) | 0.7184(12.9) |
DP-NN | 0.8617(10.0) | 0.9956(21.0) | 0.9925(3.0) | 0.3255(6.0) | 0.8900(20.5) | 0.4697(12.0) | 0.9359(6.0) | 0.5361(12.0) | 0.7742(10.0) |
S-NN | 0.8625(9.0) | 0.9959(15.0) | 0.9802(6.5) | 0.2260(18.0) | 0.8991(16.0) | 0.5732(6.0) | 0.9949(2.0) | 0.2778(18.0) | 0.7590(10.5) |
MWMO-NN | 0.8586(12.0) | 0.9963(12.0) | 0.9800(8.0) | 0.2248(19.0) | 0.8989(17.5) | 0.4306(13.0) | 0.9804(3.0) | 0.2789(17.0) | 0.7447(12.0) |
DPS-NB | 0.8000(22.0) | 0.9981(10.0) | 0.9333(19.0) | 0.3343(5.0) | 0.9914(5.0) | 0.5439(7.0) | 0.8681(10.0) | 0.5435(11.0) | 0.7301(15.1) |
NB | 0.5903(30.0) | 0.9999(6.0) | 0.6844(27.0) | 0.0977(29.0) | 0.7088(29.0) | 0.7489(3.0) | 0.0192(29.0) | 0.0963(27.0) | 0.5450(24.0) |
DP-NB | 0.6425(28.0) | 0.9983(9.0) | 0.9342(18.0) | 0.3066(12.0) | 0.9937(4.0) | 0.3725(16.0) | 0.7481(18.0) | 0.4765(15.0) | 0.6637(19.5) |
S-NB | 0.7444(25.0) | 0.9996(8.0) | 0.7065(24.0) | 0.2050(25.0) | 0.9295(9.0) | 0.7744(1.0) | 0.4920(26.0) | 0.1406(23.0) | 0.6612(19.8) |
MWMO-NB | 0.6277(29.0) | 1.0000(3.0) | 0.7055(25.0) | 0.1941(27.0) | 0.9800(7.0) | 0.7621(2.0) | 0.5171(25.0) | 0.1327(24.0) | 0.6215(21.1) |
Algorithm | ID1 | ID2 | ID3 | ID4 | ID5 | ID6 | ID7 | ID8 | ID9 |
---|---|---|---|---|---|---|---|---|---|
DPS-KNN | 0.9902(2.0) | 0.4472(4.0) | 0.5497(11.0) | 0.8367(6.0) | 0.7677(10.0) | 0.7983(1.0) | 0.7205(24.0) | 0.6867(17.0) | 0.3148(6.0) |
KNN | 0.9852(10.0) | 0.4537(2.0) | 0.6157(2.0) | 0.8777(1.0) | 0.7643(11.0) | 0.7681(6.0) | 0.7714(10.0) | 0.5700(25.0) | 0.1273(22.0) |
DP-KNN | 0.9906(1.0) | 0.4561(1.0) | 0.5971(3.0) | 0.8437(5.0) | 0.7574(15.0) | 0.7846(3.0) | 0.7361(23.0) | 0.6067(24.0) | 0.2210(13.0) |
S-KNN | 0.9842(11.0) | 0.4469(5.0) | 0.5920(6.0) | 0.8693(3.0) | 0.7789(7.0) | 0.7940(2.0) | 0.7628(16.0) | 0.6900(16.0) | 0.1865(16.0) |
MWMO-KNN | 0.9835(12.0) | 0.4481(3.0) | 0.5780(7.0) | 0.8737(2.0) | 0.7720(9.0) | 0.7787(5.0) | 0.7743(9.0) | 0.7133(15.0) | 0.1767(17.0) |
DPS-C4.5 | 0.9757(18.0) | 0.3290(14.0) | 0.4736(18.0) | 0.6939(24.0) | 0.6742(25.0) | 0.6920(21.0) | 0.7552(18.0) | 0.8067(7.0) | 0.2921(8.0) |
C4.5 | 0.9720(21.0) | 0.2671(30.0) | 0.4813(17.0) | 0.5658(28.0) | 0.6264(27.0) | 0.7059(16.0) | 0.7404(22.0) | 0.8667(2.5) | 0.3120(7.0) |
DP-C4.5 | 0.9735(20.0) | 0.2729(27.0) | 0.4406(19.0) | 0.7031(23.0) | 0.7151(19.0) | 0.6966(20.0) | 0.7635(14.0) | 0.8033(8.5) | 0.2189(14.0) |
S-C4.5 | 0.9823(15.0) | 0.3708(7.0) | 0.5395(13.0) | 0.6350(26.0) | 0.7136(20.0) | 0.7000(19.0) | 0.7683(12.0) | 0.8667(2.5) | 0.4328(1.0) |
MWMO-C4.5 | 0.9775(17.0) | 0.3193(15.0) | 0.5209(15.0) | 0.6213(27.0) | 0.6328(26.0) | 0.6809(23.0) | 0.7539(19.0) | 0.8700(1.0) | 0.3178(5.0) |
DPS-LR | 0.9303(22.0) | 0.3544(11.0) | 0.4404(20.0) | 0.7957(10.0) | 0.7731(8.0) | 0.7048(17.0) | 0.7491(21.0) | 0.7783(12.0) | 0.2842(10.0) |
LR | 0.9737(19.0) | 0.2807(26.0) | 0.5297(14.0) | 0.7713(19.0) | 0.7915(6.0) | 0.7264(10.0) | 0.7894(1.0) | 0.7197(14.0) | 0.0040(27.0) |
DP-LR | 0.9272(23.0) | 0.3604(10.0) | 0.3851(23.0) | 0.7801(15.0) | 0.7622(12.0) | 0.7227(11.0) | 0.7196(25.0) | 0.7850(11.0) | 0.2415(12.0) |
S-LR | 0.7429(28.0) | 0.3185(16.0) | 0.5962(4.0) | 0.7597(21.0) | 0.7588(14.0) | 0.7518(7.0) | 0.7869(2.0) | 0.5263(26.0) | 0.2855(9.0) |
MWMO-LR | 0.8543(25.0) | 0.3144(18.0) | 0.5743(8.0) | 0.7630(20.0) | 0.7122(21.0) | 0.7028(18.0) | 0.7773(5.0) | 0.6657(20.0) | 0.1418(21.0) |
DPS-SVM | 0.9865(7.0) | 0.3680(8.0) | 0.5017(16.0) | 0.8511(4.0) | 0.8054(2.0) | 0.7796(4.0) | 0.7786(4.0) | 0.7483(13.0) | 0.1037(24.0) |
SVM | 0.9869(6.0) | 0.3094(21.0) | 0.1849(30.0) | 0.7517(22.0) | 0.7072(23.0) | 0.2973(30.0) | 0.7554(17.0) | 0.0000(30.0) | 0.0000(29.0) |
DP-SVM | 0.9862(8.0) | 0.2674(29.0) | 0.3048(27.0) | 0.8303(7.0) | 0.7598(13.0) | 0.6534(24.0) | 0.7863(3.0) | 0.6850(18.0) | 0.0300(25.0) |
S-SVM | 0.9893(3.0) | 0.3094(21.0) | 0.6383(1.0) | 0.8180(8.0) | 0.8490(1.0) | 0.7487(8.0) | 0.7767(6.0) | 0.1900(28.0) | 0.0000(29.0) |
MWMO-SVM | 0.9888(5.0) | 0.3098(19.0) | 0.4172(22.0) | 0.7870(12.0) | 0.7086(22.0) | 0.5895(27.0) | 0.7629(15.0) | 0.1700(29.0) | 0.0000(29.0) |
DPS-NN | 0.9815(16.0) | 0.3609(9.0) | 0.2820(28.0) | 0.7724(18.0) | 0.7400(17.0) | 0.7078(15.0) | 0.7535(20.0) | 0.8217(5.0) | 0.3907(2.0) |
NN | 0.9890(4.0) | 0.3818(6.0) | 0.5940(5.0) | 0.8030(9.0) | 0.7977(4.0) | 0.7185(12.0) | 0.7759(7.0) | 0.8100(6.0) | 0.0150(26.0) |
DP-NN | 0.9834(13.0) | 0.3541(12.0) | 0.4333(21.0) | 0.7763(17.0) | 0.7418(16.0) | 0.7119(14.0) | 0.7697(11.0) | 0.8250(4.0) | 0.3746(3.0) |
S-NN | 0.9861(9.0) | 0.3058(24.0) | 0.2244(29.0) | 0.7867(13.0) | 0.8018(3.0) | 0.7304(9.0) | 0.7667(13.0) | 0.7933(10.0) | 0.3586(4.0) |
MWMO-NN | 0.9831(14.0) | 0.3450(13.0) | 0.3363(26.0) | 0.7893(11.0) | 0.7935(5.0) | 0.7173(13.0) | 0.7752(8.0) | 0.8033(8.5) | 0.2710(11.0) |
DPS-NB | 0.7980(26.0) | 0.3041(25.0) | 0.3621(25.0) | 0.7826(14.0) | 0.7047(24.0) | 0.5667(28.0) | 0.6815(27.0) | 0.6773(19.0) | 0.1691(18.0) |
NB | 0.7188(29.0) | 0.3065(23.0) | 0.5665(9.0) | 0.5057(30.0) | 0.5483(29.0) | 0.6103(25.0) | 0.5516(29.0) | 0.4100(27.0) | 0.1109(23.0) |
DP-NB | 0.8640(24.0) | 0.2715(28.0) | 0.3674(24.0) | 0.6461(25.0) | 0.5684(28.0) | 0.5194(29.0) | 0.6851(26.0) | 0.6090(23.0) | 0.1451(20.0) |
S-NB | 0.6610(30.0) | 0.3094(21.0) | 0.5562(10.0) | 0.7783(16.0) | 0.7167(18.0) | 0.6835(22.0) | 0.5451(30.0) | 0.6567(21.0) | 0.2048(15.0) |
MWMO-NB | 0.7505(27.0) | 0.3171(17.0) | 0.5419(12.0) | 0.5203(29.0) | 0.5295(30.0) | 0.6029(26.0) | 0.5587(28.0) | 0.6233(22.0) | 0.1639(19.0) |
algorithm | id10 | id11 | id12 | id13 | id14 | id15 | id16 | id17 | AVE |
DPS-KNN | 0.7983(5.0) | 0.9971(7.0) | 0.9527(11.0) | 0.2833(15.0) | 0.8267(24.0) | 0.2985(4.0) | 0.3500(25.0) | 0.6000(3.0) | 0.6599(10.3) |
KNN | 0.7796(10.0) | 0.9954(17.0) | 0.9556(8.0) | 0.2867(12.0) | 0.9000(11.5) | 0.1622(27.0) | 0.4150(23.0) | 0.5000(7.0) | 0.6428(12.0) |
DP-KNN | 0.7689(14.0) | 0.9958(12.0) | 0.9399(12.0) | 0.2850(13.5) | 0.7100(28.0) | 0.2715(7.0) | 0.4761(18.0) | 0.5467(5.0) | 0.6463(11.6) |
S-KNN | 0.8070(4.0) | 0.9954(17.0) | 0.9746(1.0) | 0.2850(13.5) | 0.9100(9.5) | 0.2038(19.0) | 0.4534(22.0) | 0.6400(1.0) | 0.6691(9.9) |
MWMO-KNN | 0.7774(11.0) | 0.9958(12.0) | 0.9698(2.0) | 0.2817(16.0) | 0.9400(6.0) | 0.2044(18.0) | 0.4679(19.0) | 0.6183(2.0) | 0.6679(9.7) |
DPS-C4.5 | 0.6746(22.0) | 1.0000(1.5) | 0.8354(15.0) | 0.3383(1.5) | 0.8490(22.0) | 0.2739(6.0) | 0.5782(10.0) | 0.2849(14.0) | 0.6192(14.4) |
C4.5 | 0.6411(26.0) | 0.9962(8.5) | 0.9654(3.5) | 0.0000(30.0) | 0.9667(2.0) | 0.0025(30.0) | 0.0000(30.0) | 0.0250(29.0) | 0.5373(19.4) |
DP-C4.5 | 0.6899(21.0) | 1.0000(1.5) | 0.8264(16.0) | 0.3383(1.5) | 0.8430(23.0) | 0.1793(23.0) | 0.5285(12.0) | 0.2971(13.0) | 0.6053(16.2) |
S-C4.5 | 0.6903(20.0) | 0.9996(4.0) | 0.9654(3.5) | 0.3000(8.0) | 0.9650(3.5) | 0.1695(25.0) | 0.7233(6.0) | 0.1317(22.0) | 0.6443(12.2) |
MWMO-C4.5 | 0.6692(23.0) | 0.9996(4.0) | 0.9176(13.0) | 0.1300(28.0) | 0.9650(3.5) | 0.1057(28.0) | 0.6556(7.0) | 0.1883(20.0) | 0.6074(16.1) |
DPS-LR | 0.7678(15.0) | 0.9915(24.0) | 0.8760(14.0) | 0.2950(9.0) | 0.8233(25.0) | 0.2422(11.0) | 0.5140(13.0) | 0.4199(11.0) | 0.6318(14.9) |
LR | 0.7887(8.0) | 0.8287(29.0) | 0.6122(24.0) | 0.1917(25.0) | 0.9483(5.0) | 0.2012(20.0) | 0.3206(27.0) | 0.1100(23.0) | 0.5640(17.5) |
DP-LR | 0.7473(18.0) | 0.9908(25.0) | 0.8077(17.0) | 0.2907(11.0) | 0.8173(26.0) | 0.2147(17.0) | 0.5018(16.0) | 0.4957(8.0) | 0.6206(16.5) |
S-LR | 0.8208(3.0) | 0.8443(28.0) | 0.6675(22.0) | 0.1950(24.0) | 0.8750(19.0) | 0.2595(10.0) | 0.4942(17.0) | 0.1900(19.0) | 0.5808(15.8) |
MWMO-LR | 0.7825(9.0) | 0.7786(30.0) | 0.6315(23.0) | 0.2117(18.0) | 0.8673(21.0) | 0.2415(12.0) | 0.4571(21.0) | 0.2117(18.0) | 0.5699(18.1) |
DPS-SVM | 0.8247(2.0) | 0.9937(21.0) | 0.7890(18.0) | 0.3183(3.5) | 0.8700(20.0) | 0.2599(9.0) | 0.6544(8.0) | 0.5700(4.0) | 0.6590(9.9) |
SVM | 0.6154(27.0) | 0.9958(12.0) | 0.5170(28.0) | 0.1967(22.0) | 0.7000(29.0) | 0.0221(29.0) | 0.1437(28.0) | 0.0000(30.0) | 0.4226(24.3) |
DP-SVM | 0.7907(7.0) | 0.9941(20.0) | 0.6828(21.0) | 0.3183(3.5) | 0.7700(27.0) | 0.1719(24.0) | 0.6040(9.0) | 0.5133(6.0) | 0.5970(16.0) |
S-SVM | 0.8269(1.0) | 0.9954(17.0) | 0.5117(30.0) | 0.1967(22.0) | 0.8900(14.5) | 0.1972(22.0) | 0.4639(20.0) | 0.0700(27.0) | 0.5571(15.2) |
MWMO-SVM | 0.7183(19.0) | 0.9954(17.0) | 0.5156(29.0) | 0.1967(22.0) | 0.9000(11.5) | 0.1977(21.0) | 0.5119(14.0) | 0.1000(24.0) | 0.5217(19.9) |
DPS-NN | 0.7508(17.0) | 0.9935(22.0) | 0.9553(9.0) | 0.3033(6.5) | 0.9100(9.5) | 0.2607(8.0) | 0.7505(5.0) | 0.4817(10.0) | 0.6598(12.8) |
NN | 0.7767(12.0) | 0.9958(12.0) | 0.9589(5.0) | 0.2750(17.0) | 0.8833(17.5) | 0.1687(26.0) | 0.9866(1.0) | 0.4000(12.0) | 0.6665(10.7) |
DP-NN | 0.7599(16.0) | 0.9927(23.0) | 0.9588(6.0) | 0.3033(6.5) | 0.8900(14.5) | 0.2345(14.0) | 0.7618(4.0) | 0.4850(9.0) | 0.6680(12.0) |
S-NN | 0.7919(6.0) | 0.9958(12.0) | 0.9586(7.0) | 0.2083(19.0) | 0.8867(16.0) | 0.2374(13.0) | 0.9713(2.0) | 0.2500(16.0) | 0.6502(12.1) |
MWMO-NN | 0.7741(13.0) | 0.9962(8.5) | 0.9551(10.0) | 0.2040(20.0) | 0.8833(17.5) | 0.2205(16.0) | 0.8841(3.0) | 0.2633(15.0) | 0.6467(12.5) |
DPS-NB | 0.6414(25.0) | 0.9808(27.0) | 0.7504(20.0) | 0.3083(5.0) | 0.8930(13.0) | 0.2823(5.0) | 0.5430(11.0) | 0.1639(21.0) | 0.5653(19.6) |
NB | 0.5303(30.0) | 0.9985(6.0) | 0.5326(27.0) | 0.0883(29.0) | 0.6950(30.0) | 0.3925(1.0) | 0.0129(29.0) | 0.0573(28.0) | 0.4492(23.8) |
DP-NB | 0.5432(29.0) | 0.9833(26.0) | 0.7582(19.0) | 0.2917(10.0) | 0.9213(8.0) | 0.2305(15.0) | 0.5075(15.0) | 0.2124(17.0) | 0.5367(21.5) |
S-NB | 0.6674(24.0) | 0.9954(17.0) | 0.5512(25.0) | 0.1833(26.0) | 0.9250(7.0) | 0.3718(3.0) | 0.3314(26.0) | 0.0725(26.0) | 0.5417(19.8) |
MWMO-NB | 0.5563(28.0) | 0.9996(4.0) | 0.5508(26.0) | 0.1763(27.0) | 0.9800(1.0) | 0.3920(2.0) | 0.3525(24.0) | 0.0778(25.0) | 0.5114(20.4) |
Algorithm | ID1 | ID2 | ID3 | ID4 | ID5 | ID6 | ID7 | ID8 | ID9 |
---|---|---|---|---|---|---|---|---|---|
DPS-KNN | 0.9965(2.0) | 0.7295(1.0) | 0.7762(3.0) | 0.9143(5.0) | 0.8930(7.0) | 0.8990(1.0) | 0.9026(2.0) | 0.8637(18.0) | 0.6623(6.0) |
KNN | 0.9923(10.0) | 0.6916(6.0) | 0.7657(6.0) | 0.9198(3.0) | 0.8628(19.0) | 0.8608(9.0) | 0.8890(19.0) | 0.7909(25.0) | 0.5507(21.0) |
DP-KNN | 0.9959(3.0) | 0.6948(5.0) | 0.7637(7.0) | 0.9081(6.0) | 0.8667(17.0) | 0.8723(3.0) | 0.9076(1.0) | 0.8153(23.0) | 0.6008(13.0) |
S-KNN | 0.9942(8.0) | 0.7162(2.0) | 0.7875(1.0) | 0.9206(2.0) | 0.8843(10.0) | 0.8922(2.0) | 0.9010(4.0) | 0.8554(19.0) | 0.5689(18.0) |
MWMO-KNN | 0.9929(9.0) | 0.7020(3.0) | 0.7700(4.0) | 0.9192(4.0) | 0.8719(15.0) | 0.8720(4.0) | 0.8913(18.0) | 0.8679(15.0) | 0.5745(16.0) |
DPS-C4.5 | 0.9888(17.0) | 0.6431(15.0) | 0.7264(16.0) | 0.8749(19.0) | 0.8671(16.0) | 0.8709(5.0) | 0.8972(12.0) | 0.9344(4.0) | 0.6455(9.0) |
C4.5 | 0.9816(21.0) | 0.5915(29.0) | 0.6807(22.0) | 0.7719(28.0) | 0.7880(27.0) | 0.8208(22.0) | 0.8701(25.0) | 0.9450(2.5) | 0.6356(11.0) |
DP-C4.5 | 0.9861(19.0) | 0.5986(27.0) | 0.6797(23.0) | 0.8796(17.0) | 0.8741(13.0) | 0.8524(13.0) | 0.8983(11.0) | 0.9339(5.0) | 0.5978(14.0) |
S-C4.5 | 0.9910(14.0) | 0.6525(12.0) | 0.7319(14.0) | 0.8264(25.0) | 0.8596(21.0) | 0.8377(16.0) | 0.8858(22.0) | 0.9450(2.5) | 0.7234(3.0) |
MWMO-C4.5 | 0.9871(18.0) | 0.6252(16.0) | 0.7183(18.0) | 0.7997(27.0) | 0.8039(26.0) | 0.8167(23.0) | 0.8739(24.0) | 0.9455(1.0) | 0.6555(7.0) |
DPS-LR | 0.9708(22.0) | 0.6727(9.0) | 0.7247(17.0) | 0.9071(7.0) | 0.9106(2.0) | 0.8642(8.0) | 0.8990(10.0) | 0.9014(12.0) | 0.6551(8.0) |
LR | 0.9822(20.0) | 0.5937(28.0) | 0.7011(19.0) | 0.8684(22.0) | 0.8832(11.0) | 0.8306(20.0) | 0.8914(17.0) | 0.8852(13.0) | 0.4915(29.0) |
DP-LR | 0.9528(24.0) | 0.6486(14.0) | 0.6512(25.0) | 0.8986(9.0) | 0.9176(1.0) | 0.8702(6.0) | 0.8946(16.0) | 0.9049(11.0) | 0.6213(12.0) |
S-LR | 0.8071(30.0) | 0.6147(18.0) | 0.7688(5.0) | 0.8760(18.0) | 0.8880(9.0) | 0.8607(10.0) | 0.8996(8.0) | 0.7832(26.0) | 0.6450(10.0) |
MWMO-LR | 0.8946(29.0) | 0.6142(19.0) | 0.7496(10.0) | 0.8729(20.0) | 0.8600(20.0) | 0.8281(21.0) | 0.8875(21.0) | 0.8672(16.0) | 0.5697(17.0) |
DPS-SVM | 0.9912(13.0) | 0.6619(11.0) | 0.7506(9.0) | 0.9218(1.0) | 0.8935(6.0) | 0.8690(7.0) | 0.9005(6.0) | 0.8824(14.0) | 0.5321(23.0) |
SVM | 0.9896(16.0) | 0.6067(22.5) | 0.5546(30.0) | 0.8448(24.0) | 0.8157(25.0) | 0.6121(30.0) | 0.8837(23.0) | 0.5000(30.0) | 0.5000(26.0) |
DP-SVM | 0.9901(15.0) | 0.5886(30.0) | 0.6023(29.0) | 0.8990(8.0) | 0.8519(22.0) | 0.7832(25.0) | 0.9017(3.0) | 0.8484(20.0) | 0.5044(24.0) |
S-SVM | 0.9919(11.0) | 0.6067(22.5) | 0.7872(2.0) | 0.8925(11.0) | 0.9098(3.0) | 0.8424(15.0) | 0.8994(9.0) | 0.5950(28.0) | 0.5000(26.0) |
MWMO-SVM | 0.9917(12.0) | 0.6067(22.5) | 0.6733(24.0) | 0.8703(21.0) | 0.8279(24.0) | 0.7631(29.0) | 0.8880(20.0) | 0.5850(29.0) | 0.5000(26.0) |
DPS-NN | 0.9953(6.0) | 0.7004(4.0) | 0.6835(21.0) | 0.8835(15.0) | 0.8810(12.0) | 0.8600(11.0) | 0.9003(7.0) | 0.9223(7.0) | 0.7451(2.0) |
NN | 0.9955(4.5) | 0.6506(13.0) | 0.7604(8.0) | 0.8915(12.0) | 0.8977(4.0) | 0.8360(19.0) | 0.8969(13.0) | 0.9155(8.0) | 0.4968(28.0) |
DP-NN | 0.9955(4.5) | 0.6669(10.0) | 0.7473(11.0) | 0.8818(16.0) | 0.8732(14.0) | 0.8504(14.0) | 0.9007(5.0) | 0.9229(6.0) | 0.7218(4.0) |
S-NN | 0.9971(1.0) | 0.6821(8.0) | 0.6065(28.0) | 0.8851(14.0) | 0.8946(5.0) | 0.8573(12.0) | 0.8956(15.0) | 0.9094(10.0) | 0.7567(1.0) |
MWMO-NN | 0.9951(7.0) | 0.6847(7.0) | 0.6889(20.0) | 0.8860(13.0) | 0.8918(8.0) | 0.8375(18.0) | 0.8968(14.0) | 0.9110(9.0) | 0.6735(5.0) |
DPS-NB | 0.9500(25.0) | 0.6229(17.0) | 0.6344(27.0) | 0.8956(10.0) | 0.8649(18.0) | 0.8376(17.0) | 0.8577(27.0) | 0.8668(17.0) | 0.5669(19.0) |
NB | 0.9257(27.0) | 0.6057(25.0) | 0.7391(12.0) | 0.7164(30.0) | 0.7435(30.0) | 0.7731(28.0) | 0.8324(28.0) | 0.7050(27.0) | 0.4724(30.0) |
DP-NB | 0.9630(23.0) | 0.6036(26.0) | 0.6375(26.0) | 0.8041(26.0) | 0.7675(28.0) | 0.7827(26.0) | 0.8649(26.0) | 0.8263(22.0) | 0.5448(22.0) |
S-NB | 0.9067(28.0) | 0.6067(22.5) | 0.7332(13.0) | 0.8634(23.0) | 0.8417(23.0) | 0.8152(24.0) | 0.8208(29.0) | 0.8285(21.0) | 0.5866(15.0) |
MWMO-NB | 0.9329(26.0) | 0.6124(20.0) | 0.7265(15.0) | 0.7189(29.0) | 0.7456(29.0) | 0.7774(27.0) | 0.8059(30.0) | 0.8135(24.0) | 0.5550(20.0) |
algorithm | id10 | id11 | id12 | id13 | id14 | id15 | id16 | id17 | AVE |
DPS-KNN | 0.9119(1.0) | 0.9972(11.0) | 0.9789(10.0) | 0.6442(11.0) | 0.9191(25.0) | 0.7238(4.0) | 0.9087(8.0) | 0.8199(2.0) | 0.8553(6.9) |
KNN | 0.8785(16.0) | 0.9955(22.5) | 0.9703(13.0) | 0.6408(14.0) | 0.9500(14.5) | 0.5600(27.0) | 0.6653(24.0) | 0.7500(11.0) | 0.8079(15.3) |
DP-KNN | 0.8775(17.5) | 0.9960(15.0) | 0.9667(15.0) | 0.6469(9.5) | 0.8591(28.0) | 0.6516(9.0) | 0.8855(9.0) | 0.7785(7.0) | 0.8286(11.1) |
S-KNN | 0.9048(3.0) | 0.9955(22.5) | 0.9853(5.0) | 0.6419(13.0) | 0.9550(12.5) | 0.5932(18.0) | 0.7532(21.0) | 0.8239(1.0) | 0.8337(9.5) |
MWMO-KNN | 0.8838(11.0) | 0.9960(15.0) | 0.9811(9.0) | 0.6404(15.0) | 0.9700(8.0) | 0.5926(19.0) | 0.7531(22.0) | 0.8137(4.0) | 0.8290(11.2) |
DPS-C4.5 | 0.8840(10.0) | 1.0000(3.0) | 0.9786(11.0) | 0.6778(1.5) | 0.9586(10.0) | 0.6520(8.0) | 0.9325(7.0) | 0.7460(12.0) | 0.8399(10.3) |
C4.5 | 0.8022(26.0) | 0.9997(7.0) | 0.9944(1.5) | 0.5000(30.0) | 0.9977(1.0) | 0.5007(30.0) | 0.5000(30.0) | 0.5133(29.0) | 0.7584(20.1) |
DP-C4.5 | 0.8801(15.0) | 1.0000(3.0) | 0.9777(12.0) | 0.6778(1.5) | 0.9580(11.0) | 0.5739(20.0) | 0.8655(12.0) | 0.7395(13.0) | 0.8219(13.5) |
S-C4.5 | 0.8415(22.0) | 1.0000(3.0) | 0.9944(1.5) | 0.6489(8.0) | 0.9975(2.5) | 0.5655(26.0) | 0.8686(11.0) | 0.5690(22.0) | 0.8199(13.3) |
MWMO-C4.5 | 0.8123(25.0) | 1.0000(3.0) | 0.9679(14.0) | 0.5617(28.0) | 0.9975(2.5) | 0.5377(28.0) | 0.8526(14.0) | 0.5950(21.0) | 0.7971(17.4) |
DPS-LR | 0.8968(6.0) | 0.9926(26.0) | 0.9666(16.0) | 0.6469(9.5) | 0.9186(26.0) | 0.6448(10.0) | 0.8320(15.0) | 0.7538(10.0) | 0.8328(12.6) |
LR | 0.8764(19.0) | 0.8615(30.0) | 0.7788(26.0) | 0.5910(24.0) | 0.9920(5.0) | 0.5731(21.0) | 0.6319(27.0) | 0.5516(23.0) | 0.7637(20.8) |
DP-LR | 0.9000(4.0) | 0.9922(27.0) | 0.9531(17.0) | 0.6421(12.0) | 0.9264(24.0) | 0.6063(15.0) | 0.8041(16.0) | 0.7950(5.0) | 0.8223(14.0) |
S-LR | 0.9093(2.0) | 0.8753(28.0) | 0.8436(21.0) | 0.5888(25.0) | 0.9436(22.0) | 0.6099(14.0) | 0.7687(19.0) | 0.5952(20.0) | 0.7810(16.8) |
MWMO-LR | 0.8837(12.0) | 0.8706(29.0) | 0.8045(23.0) | 0.5985(23.0) | 0.9464(19.0) | 0.5935(17.0) | 0.7359(23.0) | 0.6058(19.0) | 0.7754(19.9) |
DPS-SVM | 0.8993(5.0) | 0.9943(25.0) | 0.9204(20.0) | 0.6583(3.5) | 0.9393(23.0) | 0.6364(11.0) | 0.9426(5.0) | 0.8177(3.0) | 0.8360(10.9) |
SVM | 0.7600(28.0) | 0.9960(15.0) | 0.7087(30.0) | 0.6007(20.0) | 0.8500(30.0) | 0.5068(29.0) | 0.5464(28.0) | 0.5000(30.0) | 0.6927(25.7) |
DP-SVM | 0.8569(20.0) | 0.9947(24.0) | 0.8164(22.0) | 0.6583(3.5) | 0.8893(27.0) | 0.5698(24.0) | 0.8601(13.0) | 0.7799(6.0) | 0.7880(18.6) |
S-SVM | 0.8917(7.0) | 0.9959(18.5) | 0.7091(29.0) | 0.6007(20.0) | 0.9450(20.5) | 0.5726(22.0) | 0.7563(20.0) | 0.5350(25.0) | 0.7666(17.0) |
MWMO-SVM | 0.8306(23.0) | 0.9959(18.5) | 0.7141(28.0) | 0.6007(20.0) | 0.9500(14.5) | 0.5721(23.0) | 0.7880(17.0) | 0.5500(24.0) | 0.7475(22.1) |
DPS-NN | 0.8850(9.0) | 0.9958(20.0) | 0.9899(4.0) | 0.6500(7.0) | 0.9550(12.5) | 0.6921(5.0) | 0.9463(4.0) | 0.7671(8.0) | 0.8502(9.1) |
NN | 0.8775(17.5) | 0.9960(15.0) | 0.9819(6.5) | 0.6357(17.0) | 0.9489(17.5) | 0.5694(25.0) | 0.9994(1.0) | 0.7000(14.0) | 0.8264(13.1) |
DP-NN | 0.8829(13.0) | 0.9957(21.0) | 0.9931(3.0) | 0.6533(5.0) | 0.9450(20.5) | 0.6272(12.0) | 0.9392(6.0) | 0.7638(9.0) | 0.8448(10.2) |
S-NN | 0.8851(8.0) | 0.9960(15.0) | 0.9819(6.5) | 0.6018(18.0) | 0.9491(16.0) | 0.6683(6.0) | 0.9952(2.0) | 0.6347(17.0) | 0.8351(10.7) |
MWMO-NN | 0.8813(14.0) | 0.9964(12.0) | 0.9816(8.0) | 0.5997(22.0) | 0.9489(17.5) | 0.6146(13.0) | 0.9811(3.0) | 0.6330(18.0) | 0.8295(12.3) |
DPS-NB | 0.8464(21.0) | 0.9981(10.0) | 0.9459(19.0) | 0.6527(6.0) | 0.9916(6.0) | 0.6621(7.0) | 0.8757(10.0) | 0.6874(16.0) | 0.8092(16.0) |
NB | 0.7368(30.0) | 0.9999(6.0) | 0.7679(27.0) | 0.5301(29.0) | 0.8539(29.0) | 0.7810(3.0) | 0.5034(29.0) | 0.5250(28.0) | 0.7183(24.6) |
DP-NB | 0.7661(27.0) | 0.9983(9.0) | 0.9468(18.0) | 0.6403(16.0) | 0.9939(4.0) | 0.6010(16.0) | 0.7817(18.0) | 0.6887(15.0) | 0.7771(20.5) |
S-NB | 0.8187(24.0) | 0.9996(8.0) | 0.7815(25.0) | 0.5684(26.0) | 0.9645(9.0) | 0.7962(1.0) | 0.6396(26.0) | 0.5291(27.0) | 0.7706(20.3) |
MWMO-NB | 0.7488(29.0) | 1.0000(3.0) | 0.7826(24.0) | 0.5649(27.0) | 0.9900(7.0) | 0.7876(2.0) | 0.6466(25.0) | 0.5340(26.0) | 0.7496(21.4) |
Algorithm | Recall | G-Mean | F-Measure | AUC |
---|---|---|---|---|
DPS-KNN | - | - | - | - |
KNN | 15 | 15 | 9 | 15 |
DP-KNN | 15 | 14 | 10 | 15 |
S-KNN | 12 | 12 | 6 | 12 |
MWMO-KNN | 14 | 11 | 7 | 13 |
DPS-C4.5 | - | - | - | - |
C4.5 | 13 | 14 | 11 | 14 |
DP-C4.5 | 10 | 12 | 9 | 12 |
S-C4.5 | 12 | 11 | 5 | 9 |
MWMO-C4.5 | 14 | 14 | 10 | 13 |
DPS-LR | - | - | - | - |
LR | 15 | 15 | 10 | 14 |
DP-LR | 11 | 11 | 13 | 11 |
S-LR | 14 | 13 | 10 | 13 |
MWMO-LR | 16 | 15 | 13 | 15 |
DPS-SVM | - | - | - | - |
SVM | 16 | 16 | 15 | 16 |
DP-SVM | 14 | 14 | 14 | 14 |
S-SVM | 12 | 12 | 11 | 12 |
MWMO-SVM | 14 | 14 | 14 | 14 |
DPS-NN | - | - | - | - |
NN | 13 | 11 | 6 | 11 |
DP-NN | 13 | 10 | 5 | 11 |
S-NN | 9 | 10 | 8 | 10 |
MWMO-NN | 11 | 14 | 8 | 12 |
DPS-NB | - | - | - | - |
NB | 13 | 14 | 12 | 14 |
DP-NB | 12 | 11 | 10 | 10 |
S-NB | 13 | 13 | 8 | 13 |
MWMO-NB | 13 | 13 | 11 | 14 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, H.; Zhou, J.; Wu, C.-A. Imbalanced Learning Based on Data-Partition and SMOTE. Information 2018, 9, 238. https://doi.org/10.3390/info9090238
Guo H, Zhou J, Wu C-A. Imbalanced Learning Based on Data-Partition and SMOTE. Information. 2018; 9(9):238. https://doi.org/10.3390/info9090238
Chicago/Turabian StyleGuo, Huaping, Jun Zhou, and Chang-An Wu. 2018. "Imbalanced Learning Based on Data-Partition and SMOTE" Information 9, no. 9: 238. https://doi.org/10.3390/info9090238
APA StyleGuo, H., Zhou, J., & Wu, C.-A. (2018). Imbalanced Learning Based on Data-Partition and SMOTE. Information, 9(9), 238. https://doi.org/10.3390/info9090238