Big Data Analysis to Observe Check-in Behavior Using Location-Based Social Media Data
Abstract
:1. Introduction
2. Related Work
3. Material and Methods
3.1. Dataset and Study Area
3.2. Methodology
4. Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Glaeser, E.L.; Kolko, J.; Saiz, A. Consumer city. J. Econ. Geogr. 2001, 1, 27–50. [Google Scholar] [CrossRef]
- Carlino, G.A.; Mills, E.S. The determinants of county growth. J. Reg. Sci. 1987, 27, 39–54. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Gong, H.; Paaswell, R. Role of the built environment on mode choice decisions: Additional evidence on the impact of density. Transportation 2008, 35, 285–299. [Google Scholar] [CrossRef]
- Batty, M. The size, scale, and shape of cities. Science 2008, 319, 769–771. [Google Scholar] [CrossRef] [PubMed]
- Fraser, D.J.; Coon, T.; Prince, M.R.; Dion, R.; Bernatchez, L. Integrating traditional and evolutionary knowledge in biodiversity conservation: A population level case study. Ecol. Soc. 2006, 11, 4. [Google Scholar] [CrossRef]
- Charalabidis, Y.; Loukis, E. Participative public policy making through multiple social media platforms utilization. Int. J. Electron. Government Res. 2012, 8, 78–97. [Google Scholar] [CrossRef]
- Boyd, D.M.; Ellison, N.B. Social network sites: Definition, history, and scholarship. J. Comput. Commun. 2007, 13, 210–230. [Google Scholar] [CrossRef]
- Symeonidis, P.; Ntempos, D.; Manolopoulos, Y. Location-based social networks. In Recommender Systems for Location-Based Social Networks; Springer: New York, NY, USA, 2014; pp. 35–48. [Google Scholar]
- Gao, H.; Liu, H. Synthesis Lectures on Data Mining and Knowledge Discovery. In Mining Human Mobility in Location-Based Social Networks; Han, J., Getoor, L., Wang, W., Gehrke, J., Grossman, R., Eds.; Morgan & Claypool Publishers: San Rafael, CA, USA, 2015; Volume 7, pp. 1–115. [Google Scholar]
- Facebook. Available online: https://www.facebook.com/ (accessed on 30 August 2018).
- Twitter. Available online: https://twitter.com/ (accessed on 30 August 2018).
- Weibo. Available online: http://www.weibo.com (accessed on 30 August 2018).
- Lu, E.H.-C.; Chen, C.-Y.; Tseng, V.S. Personalized trip recommendation with multiple constraints by mining user check-in behaviors. In Proceedings of the 20th International Conference on Advances in Geographic Information Systems, Redondo Beach, CA, USA, 6–9 November 2012; pp. 209–218. [Google Scholar]
- De Mauro, A.; Greco, M.; Grimaldi, M. A formal definition of Big Data based on its essential features. Library Review 2016, 65, 122–135. [Google Scholar] [CrossRef] [Green Version]
- Lin, X.; Lachlan, K.A.; Spence, P.R. Exploring extreme events on social media: A comparison of user reposting/retweeting behaviors on Twitter and Weibo. Comput. Hum. Behav. 2016, 65, 576–581. [Google Scholar] [CrossRef]
- Zhao, J.; Wu, W.; Zhang, X.; Qiang, Y.; Liu, T.; Wu, L. A short-term trend prediction model of topic over Sina Weibo dataset. J. Comb. Optim. 2014, 28, 613–625. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, P.; Wang, X.; Gu, Y. Follow whom? Chinese users have different choice. arXiv, 2012; arXiv:1212.0167. [Google Scholar]
- Miller, H.J.; Goodchild, M.F. Data-driven geography. GeoJournal 2015, 80, 449–461. [Google Scholar] [CrossRef]
- López-Ornelas, E.; Abascal-Mena, R.; Zepeda-Hernández, S. Social Media Participation in Urban Planning: A New way to Interact and Take Decisions. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2017, 42, 59. [Google Scholar] [CrossRef]
- Criado, J.I.; Sandoval-Almazan, R.; Gil-Garcia, J.R. Government innovation through social media. Government Inf. Q. 2013, 30, 319–326. [Google Scholar] [CrossRef]
- Zheng, L.; Zheng, T. Innovation through social media in the public sector: Information and interactions. Government Inf. Q. 2014, 31, S106–S117. [Google Scholar] [CrossRef]
- Sobaci, M.Z.; Karkin, N. The use of twitter by mayors in Turkey: Tweets for better public services? Government Inf. Q. 2013, 30, 417–425. [Google Scholar] [CrossRef]
- Agostino, D. Using social media to engage citizens: A study of Italian municipalities. Public Relat. Rev. 2013, 39, 232–234. [Google Scholar] [CrossRef]
- Graham, M.W.; Avery, E.J.; Park, S. The role of social media in local government crisis communications. Public Relat. Rev. 2015, 41, 386–394. [Google Scholar] [CrossRef]
- Tursunbayeva, A.; Franco, M.; Pagliari, C. Use of social media for e-Government in the public health sector: A systematic review of published studies. Government Inf. Q. 2017, 34, 270–282. [Google Scholar] [CrossRef]
- Sabrina. Sina Weibo User Demographics Analysis in 2013. Available online: https://www.chinainternetwatch.com/5568/what-weibo-can-tell-you-about-chinese-netizens-part-1/ (accessed on 22 August 2018).
- Thelwall, M. Social networks, gender, and friending: An analysis of MySpace member profiles. J. Am. Soc. Inf. Sci. Technol. 2008, 59, 1321–1330. [Google Scholar] [CrossRef] [Green Version]
- Reed, P.J.; Khan, M.R.; Blumenstock, J. Observing gender dynamics and disparities with mobile phone metadata. In Proceedings of the Eighth International Conference on Information and Communication Technologies and Development, Ann Arbor, MI, USA, 3–6 June 2016. [Google Scholar]
- Kung, K.S.; Greco, K.; Sobolevsky, S.; Ratti, C. Exploring universal patterns in human home-work commuting from mobile phone data. PLoS ONE 2014, 9, e96180. [Google Scholar] [CrossRef] [PubMed]
- Hoteit, S.; Secci, S.; Sobolevsky, S.; Ratti, C.; Pujolle, G. Estimating human trajectories and hotspots through mobile phone data. Comput. Netw. 2014, 64, 296–307. [Google Scholar] [CrossRef]
- Hesse, B.W.; Moser, R.P.; Riley, W.T. From big data to knowledge in the social sciences. Ann. Am. Acad. Political Soc. Sci. 2015, 659, 16–32. [Google Scholar] [CrossRef] [PubMed]
- Benson, V.; Saridakis, G.; Tennakoon, H. Information disclosure of social media users: Does control over personal information, user awareness and security notices matter? Inf. Technol. People 2015, 28, 426–441. [Google Scholar] [CrossRef]
- Strater, K.; Richter, H. Examining privacy and disclosure in a social networking community. In Proceedings of the 3rd Symposium on Usable Privacy and Security, Pittsburgh, PA, USA, 18–20 July 2007; pp. 157–158. [Google Scholar]
- Stefanone, M.A.; Huang, Y.C.; Lackaff, D. Negotiating Social Belonging: Online, Offline, and In-Between. In Proceedings of the 44th Hawaii International Conference on System Science, Kauai, HI, USA, 4–7 January 2011; pp. 1–10. [Google Scholar]
- Benevenuto, F.; Rodrigues, T.; Cha, M.; Almeida, V. Characterizing user behavior in online social networks. In Proceedings of the 9th ACM SIGCOMM Conference on Internet Measurement, Chicago, IL, USA, 4–6 November 2009; pp. 49–62. [Google Scholar]
- Scellato, S.; Noulas, A.; Lambiotte, R.; Mascolo, C. Socio-spatial properties of online location-based social networks. In Proceedings of the Fifth International Conference on Weblogs and Social Media, Barcelona, Catalonia, Spain, 17–21 July 2011; pp. 329–336. [Google Scholar]
- Noulas, A.; Scellato, S.; Mascolo, C.; Pontil, M. An empirical study of geographic user activity patterns in foursquare. In Proceedings of the Fifth International AAAI Conference on Weblogs and Social Media, Barcelona, Spain, 17–21 July 2011. [Google Scholar]
- Ruggles, S. Big microdata for population research. Demography 2014, 51, 287–297. [Google Scholar] [CrossRef] [PubMed]
- Chorley, M.J.; Whitaker, R.M.; Allen, S.M. Personality and location-based social networks. Comput. Hum. Behav. 2015, 46, 45–56. [Google Scholar] [CrossRef]
- Maia, M.; Almeida, J.; Almeida, V. Identifying user behavior in online social networks. In Proceedings of the 1st Workshop on Social Network Systems, Glasgow, Scotland, 1 April 2008; pp. 1–6. [Google Scholar]
- Pucci, P.; Manfredini, F.; Tagliolato, P. Mapping Urban Practices through Mobile Phone Data; Springer: New York, NY, USA, 2015. [Google Scholar]
- Hong, I. Spatial analysis of location-based social networks in seoul, korea. J. Geogr. Inf. Syst. 2015, 7, 259. [Google Scholar] [CrossRef]
- Jin, L.; Chen, Y.; Wang, T.; Hui, P.; Vasilakos, A.V. Understanding user behavior in online social networks: A survey. IEEE Commun. Mag. 2013, 51, 144–150. [Google Scholar]
- Gyarmati, L.; Trinh, T.A. Measuring user behavior in online social networks. IEEE netw. 2010, 24, 26–31. [Google Scholar] [CrossRef]
- Preoţiuc-Pietro, D.; Cohn, T. Mining user behaviours: A study of check-in patterns in location based social networks. In Proceedings of the 5th Annual ACM Web Science Conference, Paris, France, 2–4 May 2013; pp. 306–315. [Google Scholar]
- Shen, Y.; Karimi, K. Urban function connectivity: Characterisation of functional urban streets with social media check-in data. Cities 2016, 55, 9–21. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.; Ye, X.; Ren, F.; Wan, Y.; Ning, P.; Du, Q. Spatial and social media data analytics of housing prices in Shenzhen, China. PLoS ONE 2016, 11, e0164553. [Google Scholar] [CrossRef] [PubMed]
- Luarn, P.; Yang, J.-C.; Chiu, Y.-P. Why people check in to social network sites. Int. J. Electron. Commer. 2015, 19, 21–46. [Google Scholar] [CrossRef]
- Wang, S.S.; Stefanone, M.A. Showing Off? Human Mobility and the Interplay of Traits, Self-Disclosure, and Facebook Check-Ins. Soc. Sci. Comput. Rev. 2013, 31, 437–457. [Google Scholar] [CrossRef]
- Smith, A. Why Americans Use Social Media. Available online: http://www.pewinternet.org/2011/11/15/why-americans-use-social-media/ (accessed on 30 September 2018).
- Zhang, L.; Pentina, I. Motivations and usage patterns of Weibo. Cyberpsychol. Behav. Soc. Netw. 2012, 15, 312–317. [Google Scholar] [CrossRef] [PubMed]
- Li-Barber, K.T. Self-disclosure and student satisfaction with Facebook. Comput. Hum. Behav. 2012, 28, 624–630. [Google Scholar]
- Pentina, I.; Basmanova, O.; Zhang, L. A cross-national study of Twitter users’ motivations and continuance intentions. J. Marketing Commun. 2016, 22, 36–55. [Google Scholar] [CrossRef]
- Shao, W.; Ross, M.; Grace, D. Developing a motivation-based segmentation typology of Facebook users. Marketing Intell. Plann. 2015, 33, 1071–1086. [Google Scholar] [CrossRef]
- Kim, H.-S. A Study on Use Motivation of SNS and Communication Behavior. J. Korea Acad.-Ind. Cooper. Soc. 2012, 13, 548–553. [Google Scholar] [CrossRef]
- Muscanell, N.L.; Guadagno, R.E. Make new friends or keep the old: Gender and personality differences in social networking use. Comput. Hum. Behav. 2012, 28, 107–112. [Google Scholar] [CrossRef]
- Chun, M.-h. The affective/cognitive involvement and satisfaction according to the usage motivations of social network services. Manage. Inf. Syst. Rev. 2012, 31. [Google Scholar]
- Hwang, H.S.; Choi, E.K. Exploring gender differences in motivations for using sina weibo. KSII Trans. Internet Inf. Syst. 2016, 10, 1429–1441. [Google Scholar]
- Blumenstock, J.E.; Gillick, D.; Eagle, N. Who’s calling? Demographics of mobile phone use in Rwanda. Transportation 2010, 32, 2–5. [Google Scholar]
- Rizwan, M.; Wanggen, W.; Cervantes, O.; Gwiazdzinski, L. Using Location-Based Social Media Data to Observe Check-In Behavior and Gender Difference: Bringing Weibo Data into Play. ISPRS Int. J. Geo-Inf. 2018, 7, 196. [Google Scholar] [CrossRef]
- Rizwan, M.; Mahmood, S.; Wanggen, W.; Ali, S. Location based social media data analysis for observing check-in behavior and city rhythm in Shanghai. In Proceedings of the 4th International Conference on Smart and Sustainable City (ICSSC 2017), Shanghai, China, 5–6 June 2017. [Google Scholar]
- Lei, C.; Zhang, A.; Qi, Q.; Su, H.; Wang, J. Spatial-Temporal Analysis of Human Dynamics on Urban Land Use Patterns Using Social Media Data by Gender. ISPRS Int. J. Geo-Inf. 2018, 7, 358. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhang, L.; Xie, X.; Ma, W.-Y. Mining correlation between locations using human location history. In Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, Seattle, WA, USA, 4–6 November 2009; pp. 472–475. [Google Scholar]
- Comito, C.; Falcone, D.; Talia, D. Mining human mobility patterns from social geo-tagged data. Pervasive Mob. Comput. 2016, 33, 91–107. [Google Scholar] [CrossRef]
- Humphreys, L. Mobile social networks and urban public space. New Media Soc. 2010, 12, 763–778. [Google Scholar] [CrossRef]
- Roche, S. Geographic Information Science I: Why does a smart city need to be spatially enabled? Prog. Hum. Geogr. 2014, 38, 703–711. [Google Scholar] [CrossRef]
- Anthopoulos, L.G.; Vakali, A. Urban Planning and Smart Cities: Interrelations and Reciprocities. In The Future Internet. FIA 2012. Lecture Notes in Computer Science; Álvarez, F., Cleary, F., Daras, P., Domingue, J., Galis, A., Garcia, A., Gavras, A., Karnourskos, S., Krco, S., Li, M.-S., et al., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; Volume 7281, pp. 178–189. [Google Scholar]
- Cui, L.; Shi, J. Urbanization and its environmental effects in Shanghai, China. Urban Clim. 2012, 2, 1–15. [Google Scholar] [CrossRef]
- Han, B.; Cook, P.; Baldwin, T. Geolocation prediction in social media data by finding location indicative words. In Proceedings of the COLING 2012, Mumbai, India, December 2012; pp. 1045–1062. [Google Scholar]
- Schoen, H.; Gayo-Avello, D.; Takis Metaxas, P.; Mustafaraj, E.; Strohmaier, M.; Gloor, P. The power of prediction with social media. Internet Res. 2013, 23, 528–543. [Google Scholar] [CrossRef] [Green Version]
- Backstrom, L.; Sun, E.; Marlow, C. Find me if you can: Improving geographical prediction with social and spatial proximity. In Proceedings of the 19th International Conference on World Wide Web, Raleigh, CA, USA, 26–30 April 2010; pp. 61–70. [Google Scholar]
- Sun, Y.; Li, M. Investigation of travel and activity patterns using location-based social network data: A case study of active mobile social media users. ISPRS Int. J. Geo-Inf. 2015, 4, 1512–1529. [Google Scholar] [CrossRef]
- Gu, Z.; Zhang, Y.; Chen, Y.; Chang, X. Analysis of attraction features of tourism destinations in a mega-city based on check-in data mining—A case study of ShenZhen, China. ISPRS Int. J. Geo-Inf. 2016, 5, 210. [Google Scholar] [CrossRef]
- Yin, J.; Lampert, A.; Cameron, M.; Robinson, B.; Power, R. Using social media to enhance emergency situation awareness. IEEE Intell. Syst. 2012, 27, 52–59. [Google Scholar] [CrossRef]
- Yates, D.; Paquette, S. Emergency knowledge management and social media technologies: A case study of the 2010 Haitian earthquake. Int. J. Inf. Manage. 2011, 31, 6–13. [Google Scholar] [CrossRef]
- Cervone, G.; Schnebele, E.; Waters, N.; Moccaldi, M.; Sicignano, R. Using Social Media and Satellite Data for Damage Assessment in Urban Areas During Emergencies. In Seeing Cities through Big Data; Thakuriah, P., Tilahun, N., Zellner, M., Eds.; Springer: Cham, Switzerland, 2017; pp. 443–457. [Google Scholar]
- Wang, Y.; Wang, T.; Ye, X.; Zhu, J.; Lee, J. Using social media for emergency response and urban sustainability: A case study of the 2012 Beijing rainstorm. Sustainability 2015, 8, 25. [Google Scholar] [CrossRef]
- Vikat, A.; Jones, C. Indicators of Gender Equality; UNECE: Geneva, Switzerland, 2014. [Google Scholar]
- O’Dorchai, S.; Meulders, D.; Crippa, F.; Margherita, A. She Figures 2009–Statistics and Indicators on Gender Equality in Science; Publications Office of the European Union: Luxembourg, Luxembourg, 2009. [Google Scholar]
- Li, J.; Fang, W.; Wang, T.; Qureshi, S.; Alatalo, J.M.; Bai, Y. Correlations between Socioeconomic Drivers and Indicators of Urban Expansion: Evidence from the Heavily Urbanised Shanghai Metropolitan Area, China. Sustainability 2017, 9, 1199. [Google Scholar] [CrossRef]
- Guo, R. Regional China: A Business and Economic Handbook by Rongxing Guo; Palgrave Macmillan UK: New York, NY, USA, 2013. [Google Scholar]
- Gu, X.; Tao, S.; Dai, B. Spatial accessibility of country parks in Shanghai, China. Urban For. Urban Greening 2017, 27, 373–382. [Google Scholar] [CrossRef]
- Xiong, X.; Jin, C.; Chen, H.; Luo, L. Using the Fusion Proximal Area Method and Gravity Method to Identify Areas with Physician Shortages. PLoS ONE 2016, 11, e0163504. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Kee, G. Shanghai: Urban Development and Regional Integration Through Mega Projects. In Development and Planning in Seven Major Coastal Cities in Southern and Eastern China; Springer: Cham, Switzerland, 2017; pp. 119–151. [Google Scholar]
- Shen, J.; Kee, G. Development and Planning in Seven Major Coastal Cities in Southern and Eastern China; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Python. Available online: https://www.python.org/ (accessed on 30 July 2018).
- Weibo API. Available online: http://open.weibo.com/wiki/API (accessed on 30 August 2018).
- Fernandes, R.; D’Souza, R. Analysis of product Twitter data though opinion mining. In Proceedings of the 2016 IEEE Annual India Conference (INDICON), Bangalore, India, 16–18 December 2016; pp. 1–5. [Google Scholar]
- Batrinca, B.; Treleaven, P.C. Social media analytics: A survey of techniques, tools and platforms. AI Soc. 2015, 30, 89–116. [Google Scholar] [CrossRef]
- Lichman, M.; Smyth, P. Modeling human location data with mixtures of kernel densities. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 24–27 August 2014; pp. 35–44. [Google Scholar]
- Silverman, B.W. Density Estimation for Statistics and Data Analysis; CRC press: Boca Raton, FL, USA, 1986. [Google Scholar]
- King, T.L.; Bentley, R.J.; Thornton, L.E.; Kavanagh, A.M. Using kernel density estimation to understand the influence of neighbourhood destinations on BMI. BMJ Open 2016, 6, e008878. [Google Scholar] [CrossRef] [PubMed]
- Hasan, S.; Zhan, X.; Ukkusuri, S.V. Understanding urban human activity and mobility patterns using large-scale location-based data from online social media. In Proceedings of the 2nd ACM SIGKDD International Workshop on Urban Computing, Chicago, IL, USA, 11 August 2013. [Google Scholar]
- Li, L.; Goodchild, M.F.; Xu, B. Spatial, temporal, and socioeconomic patterns in the use of Twitter and Flickr. Cartogr. Geog. Inf. Sci. 2013, 40, 61–77. [Google Scholar] [CrossRef]
- Sun, Y.; Fan, H.; Li, M.; Zipf, A. Identifying the city center using human travel flows generated from location-based social networking data. Environ. Plann. B Plann. Des. 2016, 43, 480–498. [Google Scholar] [CrossRef]
- Yuan, N.J.; Zheng, Y.; Xie, X.; Wang, Y.; Zheng, K.; Xiong, H. Discovering urban functional zones using latent activity trajectories. IEEE Trans. Knowl. Data Eng. 2015, 27, 712–725. [Google Scholar] [CrossRef]
- Li, H.; Ge, Y.; Hong, R.; Zhu, H. Point-of-interest recommendations: Learning potential check-ins from friends. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 975–984. [Google Scholar]
- Xie, Z.; Yan, J. Kernel density estimation of traffic accidents in a network space. Comput. Environ. Urban Syst. 2008, 32, 396–406. [Google Scholar] [CrossRef]
- Zhang, Q.; Jin, X.; Zhang, Z.; Zhang, Z.; Liu, Z. An Evaluation Method for Spatial Distribution Uniformity of Plane Form Error for Precision Assembly. Procedia CIRP 2007, 76, 59–62. [Google Scholar] [CrossRef]
- Yoon, H.; Srinivasan, S. Are they well situated? Spatial analysis of privately owned public space, Manhattan, New York City. Urban Affairs Rev. 2015, 51, 358–380. [Google Scholar] [CrossRef]
Study Sample | |
---|---|
Total number of check-ins | 503,521 |
Total number of processed check-ins | 474,442 |
Total number of users | 14,872 |
Total number of male users | 7270 |
Total number of female users | 7602 |
Range | March–April 2016 |
City | Shanghai, China |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rizwan, M.; Wan, W. Big Data Analysis to Observe Check-in Behavior Using Location-Based Social Media Data. Information 2018, 9, 257. https://doi.org/10.3390/info9100257
Rizwan M, Wan W. Big Data Analysis to Observe Check-in Behavior Using Location-Based Social Media Data. Information. 2018; 9(10):257. https://doi.org/10.3390/info9100257
Chicago/Turabian StyleRizwan, Muhammad, and Wanggen Wan. 2018. "Big Data Analysis to Observe Check-in Behavior Using Location-Based Social Media Data" Information 9, no. 10: 257. https://doi.org/10.3390/info9100257
APA StyleRizwan, M., & Wan, W. (2018). Big Data Analysis to Observe Check-in Behavior Using Location-Based Social Media Data. Information, 9(10), 257. https://doi.org/10.3390/info9100257