A Novel Grey Prediction Model Combining Markov Chain with Functional-Link Net and Its Application to Foreign Tourist Forecasting
Abstract
:1. Introduction
2. The MCGM(1,1) Model
2.1. Original GM(1,1) Model
2.2. Residual Modification by Markov Chain
3. The Proposed NN-Grey-Markov Model
3.1. Incorporating Functional-Link Net into the Proposed NN-Grey-Markov Model
3.2. Constructing the Proposed NN-Grey-Markov Model
3.2.1. Selection
3.2.2. Crossover
3.2.3. Mutation
4. Empirical Study
4.1. Background
4.2. GA Parameters
- (i)
- nsize = 200: It is reasonable to specify population size ranging from 50 to 500 individuals.
- (ii)
- nmax = 1000: nmax plays a role of stopping condition, and it should take available computing time into account.
- (iii)
- ndel = 2: A small number of elite chromosomes is considered.
- (iv)
- Prc = 0.8, Prm = 0.01.
4.3. Applications to Foreign Tourist Forecasting
4.3.1. Case I
4.3.2. Case II
5. Discussion and Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ediger, V.S.; Akar, S. ARIMA forecasting of primary energy demand by fuel in Turkey. Energy Policy 2007, 35, 1701–1708. [Google Scholar] [CrossRef]
- Feng, S.J.; Ma, Y.D.; Song, Z.L.; Ying, J. Forecasting the energy consumption of China by the grey prediction model. Energy Sour. B Econ. Plan. Policy 2012, 7, 376–389. [Google Scholar]
- Li, D.C.; Chang, C.J.; Chen, C.C.; Chen, W.C. Forecasting short-term electricity consumption using the adaptive grey-based approach-An Asian case. Omega 2012, 40, 767–773. [Google Scholar] [CrossRef]
- Pi, D.; Liu, J.; Qin, X. A grey prediction approach to forecasting energy demand in China. Energy Sour. A Recovery Util. Environ. Eff. 2010, 32, 1517–1528. [Google Scholar] [CrossRef]
- Wang, C.H.; Hsu, L.C. Using genetic algorithms grey theory to forecast high technology industrial output. Appl. Math. Comput. 2008, 195, 256–263. [Google Scholar] [CrossRef]
- Cankurt, S.; Subasi, A. Developing tourism demand forecasting models using machine learning techniques with trend, seasonal, and cyclic components. Balkan J. Electr. Comput. Eng. 2015, 3, 42–49. [Google Scholar]
- Lin, C.J.; Chen, H.F.; Lee, T.S. Forecasting tourism demand using time series, artificial neural networks and multivariate adaptive regression splines: Evidence from Taiwan. Int. J. Bus. Adm. 2011, 2, 14–24. [Google Scholar]
- Deng, J.L. Control problems of grey systems. Syst. Control Lett. 1982, 1, 288–294. [Google Scholar]
- Suganthi, L.; Samuel, A.A. Energy models for demand forecasting-A review. Renew. Sustain. Energy Rev. 2012, 16, 1223–1240. [Google Scholar] [CrossRef]
- Liu, S.; Lin, Y. Grey Information: Theory and Practical Applications; Springer: London, UK, 2006. [Google Scholar]
- Cui, J.; Liu, S.F.; Zeng, B.; Xie, N.M. A novel grey forecasting model and its optimization. Appl. Math. Model. 2013, 37, 4399–4406. [Google Scholar] [CrossRef]
- Hu, Y.C.; Chiu, Y.J.; Liao, Y.L.; Li, Q. A fuzzy similarity measure for collaborative filtering using nonadditive grey relational analysis. J. Grey Syst. 2015, 27, 93–103. [Google Scholar]
- Lee, Y.S.; Tong, L.I. Forecasting energy consumption using a grey model improved by incorporating genetic programming. Energy Convers. Manag. 2011, 52, 147–152. [Google Scholar] [CrossRef]
- Mao, M.Z.; Chirwa, E.C. Application of grey model GM(1,1) to vehicle fatality risk estimation. Technol. Forecast. Soc. Chang. 2006, 73, 588–605. [Google Scholar] [CrossRef]
- Tsaur, R.C.; Liao, Y.C. Forecasting LCD TV demand using the fuzzy grey model GM(1,1). Int. J. Uncertain. Fuzziness 2007, 15, 753–767. [Google Scholar] [CrossRef]
- Wei, J.; Zhou, L.; Wang, F.; Wu, D. Work safety evaluation in Mainland China using grey theory. Appl. Math. Model. 2015, 39, 924–933. [Google Scholar] [CrossRef]
- Zeng, B.; Meng, W.; Tong, M.Y. A self-adaptive intelligence grey predictive model with alterable structure and its application. Eng. Appl. Artif. Intell. 2016, 50, 236–244. [Google Scholar] [CrossRef]
- Hu, Y.C. Electricity consumption forecasting using a neural-network-based grey prediction approach. J. Oper. Res. Soc. 2017, 68, 1259–1264. [Google Scholar] [CrossRef]
- Hu, Y.C.; Jiang, P. Forecasting energy demand using neural-network-based grey residual modification models. J. Oper. Res. Soc. 2017, 68, 556–565. [Google Scholar] [CrossRef]
- Li, K.; Liu, L.; Zhai, J.; Khoshgoftaar, T.M.; Li, T. The improved grey model based on particle swarm optimization algorithm for time series prediction. Eng. Appl. Artif. Intell. 2016, 55, 285–291. [Google Scholar] [CrossRef]
- Yin, J.C.; Zou, Z.J.; Feng, X.; Wang, N.N. Online ship roll motion prediction based on grey sequential extreme learning machine. Neurocomputing 2014, 129, 168–174. [Google Scholar] [CrossRef]
- Lu, J.; Xie, W.; Zhou, H.; Zhang, A. An optimized nonlinear grey Bernoulli model and its applications. Neurocomputing 2016, 177, 206–214. [Google Scholar] [CrossRef]
- Chen, Y.; He, K.; Zhang, C. A novel grey wave forecasting method for predicting metal prices. Res. Policy 2016, 49, 323–331. [Google Scholar] [CrossRef]
- Liu, S.F.; Yang, Y.G.; Wu, L.F. Grey System Theory and Application; Science Press: Beijing, China, 2014. [Google Scholar]
- Sun, X.; Sun, W.; Wang, J.; Gao, Y. Using a Grey-Markov model optimized by Cuckoo search algorithm to forecast the annual foreign tourist arrivals to China. Tour. Manag. 2016, 52, 369–379. [Google Scholar] [CrossRef]
- He, Y.; Bao, Y.D. Grey-Markov forecasting model and its application. Syst. Eng. Theory Pract. 1992, 9, 59–63. [Google Scholar]
- Huang, M.; He, Y.; Cen, H. Predictive analysis on electric power supply and demand in China. Renew. Energy 2007, 32, 1165–1174. [Google Scholar] [CrossRef]
- Hsu, C.I.; Wen, Y.U. Improved Grey prediction models for trans-Pacific air passenger market. Transp. Plan. Technol. 1998, 22, 87–107. [Google Scholar] [CrossRef]
- Hsu, L.C. Applying the grey prediction model to the global integrated circuit industry. Technol. Forecast. Soc. Chang. 2003, 70, 563–574. [Google Scholar] [CrossRef]
- Hsu, Y.T.; Liu, M.C.; Yeh, J.; Hung, H.F. Forecasting the turning time of stock market based on Markov-Fourier grey model. Expert Syst. Appl. 2009, 36, 8597–8603. [Google Scholar] [CrossRef]
- Kumar, U.; Jain, V.K. Time series models (Grey-Markov, Grey Model with rolling mechanism and singular spectrum analysis) to forecast energy consumption in India. Energy 2010, 35, 1709–1716. [Google Scholar] [CrossRef]
- Li, G.D.; Masuda, S.; Nagai, M. The prediction model for electrical power system using an improved hybrid optimization model. Electr. Power Energy Syst. 2013, 44, 981–987. [Google Scholar] [CrossRef]
- Mao, Z.L.; Sun, J.H. Application of Grey-Markov model in forecasting fire accidents. Procedia Eng. 2011, 11, 314–318. [Google Scholar]
- Wang, C.H. Predicting tourism demand using fuzzy time-series and hybrid grey theory. Tour. Manag. 2004, 25, 367–374. [Google Scholar] [CrossRef]
- Xie, N.M.; Yuan, C.Q.; Yang, Y.J. Forecasting China’s energy demand and self-sufficiency rate by grey forecasting model and Markov model. Electr. Power Energy Syst. 2015, 66, 1–8. [Google Scholar] [CrossRef]
- Hu, Y.C. Functional-link nets with genetic-algorithm-based learning for robust nonlinear interval regression analysis. Neurocomputing 2009, 72, 1808–1816. [Google Scholar] [CrossRef]
- Pao, Y.H. Adaptive Pattern Recognition and Neural Networks; Addison-Wesley: Reading, MA, USA, 1989. [Google Scholar]
- Pao, Y.H. Functional-link net computing: Theory, system architecture, and functionalities. Computer 1992, 25, 76–79. [Google Scholar] [CrossRef]
- Park, G.H.; Pao, Y.H. Unconstrained word-based approach for off-line script recognition using density-based random-vector functional-link net. Neurocomputing 2000, 31, 45–65. [Google Scholar] [CrossRef]
- Song, H.; Li, G. Tourism Demand Modelling and Forecasting: A Review of Recent Research. Tour. Manag. 2008, 29, 203–220. [Google Scholar] [CrossRef] [Green Version]
- Yu, G.; Schwartz, Z. Forecasting short time-series tourism demand with artificial intelligence models. J. Travel Res. 2006, 45, 194–203. [Google Scholar] [CrossRef]
- Ishibuchi, H.; Nakashima, T.; Nii, M. Classification and Modeling with Linguistic Information Granules: Advanced Approaches to Linguistic Data Mining; Springer: Heidelberg, Germany, 2004. [Google Scholar]
- Goldberg, D.E. Genetic Algorithms in Search, Optimization, and Machine Learning; Addison-Wesley: Reading, MA, USA, 1989. [Google Scholar]
- Osyczka, A. Evolutionary Algorithms for Single and Multicriteria Design Optimization; Physica-Verlag: Heidelberg, Germany, 2003. [Google Scholar]
- Hu, Y.C. Grey prediction with residual modification using functional-link net and its application to energy demand forecasting. Kybernetes 2017, 46, 349–363. [Google Scholar] [CrossRef]
- Lee, S.C.; Shih, L.H. Forecasting of electricity costs based on an enhanced gray-based learning model: A case study of renewable energy in Taiwan. Technol. Forecast. Soc. Chang. 2011, 78, 1242–1253. [Google Scholar] [CrossRef]
- Makridakis, S. Accuracy measures: Theoretical and practical concerns. Int. J. Forecast. 1993, 9, 527–529. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, S.; Zhao, W.; Zhu, W. Optimal parameters estimation and input subset for grey model based on chaotic particle swarm optimization algorithm. Expert Syst. Appl. 2011, 38, 8151–8158. [Google Scholar] [CrossRef]
- Taiwan Tourism Bureau. The Yearly Statistics, Technical Report. Available online: http://admin.taiwan.net.tw/statistics/year_en.aspx?no=15 (accessed on 15 July 2017).
- Onisawa, T.; Sugeno, M.; Nishiwaki, M.Y.; Kawai, H.; Harima, Y. Fuzzy measure analysis of public attitude towards the use of nuclear energy. Fuzzy. Sets Syst. 1986, 20, 259–289. [Google Scholar] [CrossRef]
- Hu, Y.C.; Tseng, F.M. Functional-link net with fuzzy integral for bankruptcy prediction. Neurocomputing 2007, 70, 2959–2968. [Google Scholar] [CrossRef]
- Wang, W.; Wang, Z.; Klir, G.J. Genetic algorithms for determining fuzzy measures from data. J. Intell. Fuzzy. Syst. 1998, 6, 171–183. [Google Scholar]
Year | Japan | Hong Kong/Macao | Korea | China | U.S.A. | Southeast Asia |
---|---|---|---|---|---|---|
2001 | 976,750 | 435,164 | 85,744 | 348,808 | 488,968 | |
2002 | 998,497 | 456,554 | 83,624 | 377,470 | 530,319 | |
2003 | 657,053 | 323,178 | 92,893 | 272,858 | 457,103 | |
2004 | 887,311 | 417,087 | 148,095 | 382,822 | 568,269 | |
2005 | 1,124,334 | 432,718 | 182,517 | 390,929 | 636,925 | |
2006 | 1,161,489 | 431,884 | 196,260 | 394,802 | 643,338 | |
2007 | 1,166,380 | 491,437 | 225,814 | 397,965 | 700,287 | |
2008 | 1,086,691 | 618,667 | 252,266 | 329,204 | 387,197 | 725,751 |
2009 | 1,000,661 | 718,806 | 167,641 | 972,123 | 369,258 | 689,027 |
2010 | 1,080,153 | 794,362 | 216,901 | 1,630,735 | 395,729 | 911,174 |
2011 | 1,294,758 | 817,944 | 242,902 | 1,784,185 | 412,617 | 1,071,975 |
2012 | 1,432,315 | 1,016,356 | 259,089 | 2,586,428 | 411,416 | 1,132,592 |
2013 | 1,421,550 | 1,183,341 | 351,301 | 2,874,702 | 414,060 | 1,261,596 |
2014 | 1,634,790 | 1,375,770 | 527,684 | 3,987,152 | 458,691 | 1,388,305 |
2015 | 1,627,229 | 1,513,597 | 658,757 | 4,184,102 | 479,452 | 1,425,485 |
2016 | 1,895,702 | 1,614,803 | 884,397 | 3,511,734 | 523,888 | 1,653,908 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Y.-C.; Jiang, P.; Chiu, Y.-J.; Tsai, J.-F. A Novel Grey Prediction Model Combining Markov Chain with Functional-Link Net and Its Application to Foreign Tourist Forecasting. Information 2017, 8, 126. https://doi.org/10.3390/info8040126
Hu Y-C, Jiang P, Chiu Y-J, Tsai J-F. A Novel Grey Prediction Model Combining Markov Chain with Functional-Link Net and Its Application to Foreign Tourist Forecasting. Information. 2017; 8(4):126. https://doi.org/10.3390/info8040126
Chicago/Turabian StyleHu, Yi-Chung, Peng Jiang, Yu-Jing Chiu, and Jung-Fa Tsai. 2017. "A Novel Grey Prediction Model Combining Markov Chain with Functional-Link Net and Its Application to Foreign Tourist Forecasting" Information 8, no. 4: 126. https://doi.org/10.3390/info8040126
APA StyleHu, Y. -C., Jiang, P., Chiu, Y. -J., & Tsai, J. -F. (2017). A Novel Grey Prediction Model Combining Markov Chain with Functional-Link Net and Its Application to Foreign Tourist Forecasting. Information, 8(4), 126. https://doi.org/10.3390/info8040126