Single-Valued Neutrosophic Hybrid Arithmetic and Geometric Aggregation Operators and Their Decision-Making Method
Abstract
:1. Introduction
2. Some Concepts and Operations of Single-Valued Neutrosophic Numbers
- (1)
- (z1)c = <V1, 1 − U1, T1> (complement of z1);
- (2)
- z1 ⊆ z2 if and only if T1 ≤ T2, U1 ≥ U2 and V1 ≥ V2;
- (3)
- z1 = z2 if and only if z1 ⊆ z2 and z2 ⊆ z1.
- (4)
- ;
- (5)
- ;
- (6)
- for α > 0;
- (7)
- for α > 0.
- (1)
- If E(z1) > E(z2), then z1 ≻ z2;
- (2)
- If E(z1) = E(z2) and H(z1) > H(z2), then z1 ≻ z2;
- (3)
- If E(z1) = E(z2) and H(z1) = H(z2), then z1 = z2.
3. Hybrid Arithmetic and Geometric Aggregation Operators of Single-Valued Neutrosophic Numbers
3.1. SVNNHWAGA Operator
- (1)
- Idempotency: If zj = z for j = 1, 2, …, n, then there is .
- (2)
- Boundedness: If and for j = 1, 2, …, n, then there exists .
- (3)
- Monotonicity: If zj ≤ zj* for j = 1, 2, …, n, then holds.
- (1)
- The SVNNHWAGA operator reduces to the SVNNWAA operator if α = 1;
- (2)
- The SVNNHWAGA operator reduces to the SVNNWGA operator if α = 0;
- (3)
- The SVNNHWAGA operator is the mean of the SVNNWAA and SVNNWGA operators if α = 0.5.
3.2. SVNNHOWAGA Operator
- (1)
- Idempotency: If zj = z for j = 1, 2, …, n, then there exists .
- (2)
- Boundedness: If and for j = 1, 2, …, n, then there exists .
- (3)
- Monotonicity: If zj ≤ zj* for j = 1, 2, …, n, then holds.
- (4)
- Commutativity: If is any permutation of , then holds.
- (1)
- The SVNNHOWAGA operator reduces to the SVNNOWAA operator if α = 1;
- (2)
- The SVNNHOWAGA operator reduces to the SVNNOWGA operator if α = 0;
- (3)
- The SVNNHOWAGA operator is the mean of the SVNNOWAA and SVNNOWGA operators if α = 0.5.
3.3. Numerical Examples
4. Decision-Making Method Using the SVNNHWAGA or SVNNHOWAGA Operator
- Step 1.
- Suppose that the weight vector of attributes is w = (w1, w2, …, wn) and satisfies for wj ∈ [0,1]. Then, the aggregated value of zi (i = 1, 2, …, m) for each alternative Zi (i = 1, 2, …, m) is calculated by the following SVNNHWAGA operator:
- Step 2.
- By Equation (1) (Equation (2) if necessary), we calculate the score values of E(zi) (accuracy degrees of H(zi) if necessary) (i = 1, 2, …, m).
- Step 3.
- Corresponding to the score values (accuracy degrees), we rank all the alternatives in a descending order and determine the best choice based on the alternative with the largest value.
- Step 4.
- End.
5. MADM Problem of the Design Schemes of Punching Machine
- Step 1.
- By Equation (11) (generally take α = 0.5), we calculate the aggregated values of zi (i = 1, 2, 3, 4) for each alternative Zi (i = 1, 2, 3, 4) as the following results:z1 = <0.8255, 0.1000, 0.2818>, z2 = <0.7534, 0.1367, 0.2149>, z3 = <0.7888, 0.1367, 0.2384>, and z4 = <0.8761, 0.1134, 0.2049>.
- Step 2.
- By Equation (1), we calculate the score values of E(zi) for each alternative Zi (i = 1, 2, 3, 4) as the following values:E(z1) = 0.8145, E(z2) = 0.8006, E(z3) = 0.8045, and E(z4) = 0.8526.
- Step 3.
- According to E(z4) > E(z1) > E(z3) > E(z2), the ranking of the four design schemes is Z4 ≻ Z1 ≻ Z3 ≻ Z2. So, the best design scheme is Z4. These results are the same as in [29].
- Step 1’.
- By Equation (12) (in general take α = 0.5), we calculate the aggregated values of zi (i = 1, 2, 3, 4) for each alternative Zi (i = 1, 2, 3, 4) as the following results:z1 = <0.8577, 0.1000, 0.2378>, z2 = <0.7708, 0.1179, 0.1520>, z3 = <0.7892, 0.1179, 0.2190>, and z4 = <0.8711, 0.1089, 0.1740>.
- Step 2’.
- By Equation (1), we calculate the score values of E(zi) for each scheme Zi (i = 1, 2, 3, 4) as the following values:E(z1) = 0.8400, E(z2) = 0.8336, E(z3) = 0.8174, and E(z4) = 0.8627.
- Step 3’.
- According to E(z4) > E(z1) > E(z2) > E(z3), the ranking of the four design schemes is Z4 ≻ Z1 ≻ Z2 ≻ Z3. Thus, the best design scheme is also Z4.
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Zadeh, L.A. Fuzzy Sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Zadeh, L.A. The concept of a linguistic variable and its application to approximate reasoning Part I. Inf. Sci. 1975, 8, 199–249. [Google Scholar] [CrossRef]
- Atanassov, K. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [Google Scholar] [CrossRef]
- Atanassov, K.; Gargov, G. Interval-valued intuitionistic fuzzy sets. Fuzzy Sets Syst. 1989, 31, 343–349. [Google Scholar] [CrossRef]
- Ye, J. Multicriteria decision-making method using the Dice similarity measure based on the reduct intuitionistic fuzzy sets of interval-valued intuitionistic fuzzy sets. Appl. Math. Model. 2012, 36, 4466–4472. [Google Scholar] [CrossRef]
- De Maio, C.; Fenza, G.; Loia, V.; Orciuoli, F.; Herrera-Viedma, E. A context-aware fuzzy linguistic consensus model supporting innovation processes. In Proceedings of the 2016 IEEE International Conference on Fuzzy Systems, Vancouver, BC, Canada, 24–29 July 2016; pp. 1685–1692. [Google Scholar]
- De Maio, C.; Fenza, G.; Loia, V.; Orciuoli, F.; Herrera-Viedma, E. A framework for context-aware heterogeneous group decision making in business processes. Knowl.-Based Syst. 2016, 102, 39–50. [Google Scholar] [CrossRef]
- Wan, S.P.; Xu, J.; Dong, J.Y. Aggregating decision information into interval-valued intuitionistic fuzzy numbers for heterogeneous multi-attribute group decision making. Knowl.-Based Syst. 2016, 113, 155–170. [Google Scholar] [CrossRef]
- Smarandache, F. Neutrosophy: Neutrosophic Probability, Set, and Logic; American Research Press: Rehoboth, DE, USA, 1998. [Google Scholar]
- Wang, H.; Smarandache, F.; Zhang, Y.Q.; Sunderraman, R. Single valued neutrosophic sets. Multisp. Multistruct. 2010, 4, 410–413. [Google Scholar]
- Wang, H.; Smarandache, F.; Zhang, Y.Q.; Sunderraman, R. Interval Neutrosophic Sets and Logic: Theory and Applications in Computing; Hexis: Phoenix, AZ, USA, 2005. [Google Scholar]
- Ye, J. A multicriteria decision-making method using aggregation operators for simplified neutrosophic sets. J. Intell. Fuzzy Syst. 2014, 26, 2459–2466. [Google Scholar]
- Zhang, H.Y.; Wang, J.Q.; Chen, X.H. Interval neutrosophic sets and their application in multicriteria decision making problems. Sci. World J. 2014, 2014, 645953. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.D.; Wang, Y.M. Multiple attribute decision making method based on single-valued neutrosophic normalized weighted Bonferroni mean. Neural Comput. Appl. 2014, 25, 2001–2010. [Google Scholar] [CrossRef]
- Liu, P.D.; Chu, Y.C.; Li, Y.W.; Chen, Y.B. Some generalized neutrosophic number Hamacher aggregation operators and their application to group decision making. J. Int. Fuzzy Syst. 2014, 16, 242–255. [Google Scholar]
- Zhao, A.W.; Du, J.G.; Guan, H.J. Interval valued neutrosophic sets and multi-attribute decision-making based on generalized weighted aggregation operator. J. Intell. Fuzzy Syst. 2015, 29, 2697–2706. [Google Scholar]
- Sun, H.X.; Yang, H.X.; Wu, J.Z.; Yao, O.Y. Interval neutrosophic numbers Choquet integral operator for multi-criteria decision making. J. Intell. Fuzzy Syst. 2015, 28, 2443–2455. [Google Scholar] [CrossRef]
- Ye, J. Multiple attribute decision-making method based on the possibility degree ranking method and ordered weighted aggregation operators of interval neutrosophic numbers. J. Intell. Fuzzy Syst. 2015, 28, 1307–1317. [Google Scholar]
- Liu, P.D.; Wang, Y.M. Interval neutrosophic prioritized OWA operator and its application to multiple attribute decision making. J. Syst. Sci. Complex. 2016, 29, 681–697. [Google Scholar] [CrossRef]
- Wu, X.H.; Wang, J.Q.; Peng, J.J.; Chen, X.H. Cross-entropy and prioritized aggregation operator with simplified neutrosophic sets and their application in multi-criteria decision-making problems. Int. J. Fuzzy Syst. 2016, 18, 1104–1116. [Google Scholar] [CrossRef]
- Ye, J. Exponential operations and aggregation operators of interval neutrosophic sets and their decision making methods. SpringerPlus 2016, 5, 1488. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.K.; Ye, J. Exponential operations and aggregation method of single-valued neutrosophic numbers for decision making. Information 2017, 8, 62. [Google Scholar] [CrossRef]
- Bausys, R.; Zavadskas, K.E.; Kaklauskas, A. Application of neutrosophic set to multicriteria decision making by COPRAS. J. Econ. Comput. Econ. Cybernet. Stud. Res. 2015, 49, 91–106. [Google Scholar]
- Zavadskas, E.K.; Bausys, R.; Lazauskas, M. Sustainable assessment of alternative sites for the construction of a waste incineration plant by applying WASPAS method with single-valued neutrosophic set. Sustainability 2015, 7, 15923–15936. [Google Scholar] [CrossRef]
- Tian, Z.P.; Zhang, H.Y.; Wang, J.; Wang, J.Q.; Chen, X.H. Multi-criteria decision-making method based on a cross-entropy with interval neutrosophic sets. Int. J. Syst. Sci. 2016, 47, 3598–3608. [Google Scholar] [CrossRef]
- Pouresmaeil, H.; Shivanian, E.; Khorram, E.; Fathabadi, H.S. An extended method using TOPSIS and VIKOR for multiple attribute decision making with multiple decision makers and single valued neutrosophic numbers. Adv. Appl. Stat. 2017, 50, 261–292. [Google Scholar] [CrossRef]
- Chen, J.Q.; Ye, J. Some single-valued neutrosophic Dombi weighted aggregation operators for multiple attribute decision-making. Symmetry 2017, 9, 82. [Google Scholar] [CrossRef]
- Ye, J. Intuitionistic fuzzy hybrid arithmetic and geometric aggregation operators for the decision-making of mechanical design schemes. Appl. Intell. 2017. [Google Scholar] [CrossRef]
- Ye, J. Projection and bidirectional projection measures of single valued neutrosophic sets and their decision-making method for mechanical design schemes. J. Exp. Theor. Artif. Intell. 2016. [Google Scholar] [CrossRef]
Potential Alternative | Z1 | Z2 | Z3 | Z4 |
---|---|---|---|---|
Reducing mechanism | Gear reducer | Gear head motor | Gear reducer | Gear head motor |
Punching mechanism | Crank-slider mechanism | Six-bar punching mechanism | Six-bar punching mechanism | Crank-slider mechanism |
Dial feed intermittent mechanism | Sheave mechanism | Ratchet feed mechanism |
Aggregation Operator | Aggregated Result | Score Value | Ranking |
---|---|---|---|
SVNNWAA (α = 1) | z1 = <0.8301, 0.1000, 0.2741>, z2 = <0.7553, 0.1320, 0.1763>, z3 = <0.7892, 0.1320, 0.2352>, z4 = <0.8775, 0.1110, 0.1966> | E(z1) = 0.8187, E(z2) = 0.8157, E(z3) = 0.8073, E(z4) = 0.8566 | Z4 ≻ Z1 ≻ Z2 ≻ Z3 |
SVNNWGA (α = 0) | z1 = <0.8209, 0.1000, 0.2895>, z2 = <0.7516, 0.1414, 0.2517>, z3 = <0.7883, 0.1414, 0.2416>, z4 = <0.8746, 0.1158, 0.2131> | E(z1) = 0.8105, E(z2) = 0.7861, E(z3) = 0.8018, E(z4) = 0.8486 | Z4 ≻ Z1 ≻ Z3 ≻ Z2 |
SVNNHWAGA (α = 0.5) | z1 = <0.8255, 0.1000, 0.2818>, z2 = <0.7534, 0.1367, 0.2149>, z3 = <0.7888, 0.1367, 0.2384>, z4 = <0.8761, 0.1134, 0.2049> | E(z1) = 0.8145, E(z2) = 0.8006, E(z3) = 0.8045, E(z4) = 0.8526 | Z4 ≻ Z1 ≻ Z3 ≻ Z2 |
SVNNOWAA (α = 1) | z1 = <0.8619, 0.1000, 0.2325>, z2 = <0.7723, 0.1149, 0.1311>, z3 = <0.7896, 0.1149, 0.2169>, z4 = <0.8725, 0.1072, 0.1644> | E(z1) = 0.8431, E(z2) = 0.8421, E(z3) = 0.8193, E(z4) = 0.8670 | Z4 ≻ Z1 ≻ Z2 ≻ Z3 |
SVNNOWGA (α = 0) | z1 = <0.8536, 0.1000, 0.2432>, z2 = <0.7693, 0.1210, 0.1724>, z3 = <0.7888, 0.1210, 0.2211>, z4 = <0.8697, 0.1105, 0.1835> | E(z1) = 0.8368, E(z2) = 0.8253, E(z3) = 0.8156, E(z4) = 0.8585 | Z4 ≻ Z1 ≻ Z2 ≻ Z3 |
SVNNHOWAGA (α = 0.5) | z1 = <0.8577, 0.1000, 0.2378>, z2 = <0.7708, 0.1179, 0.1520>, z3 = <0.7892, 0.1179, 0.2190>, z4 = <0.8711, 0.1089, 0.1740> | E(z1) = 0.8400, E(z2) = 0.8336, E(z3) = 0.8174, E(z4) = 0.8627 | Z4 ≻ Z1 ≻ Z2 ≻ Z3 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Z.; Ye, J. Single-Valued Neutrosophic Hybrid Arithmetic and Geometric Aggregation Operators and Their Decision-Making Method. Information 2017, 8, 84. https://doi.org/10.3390/info8030084
Lu Z, Ye J. Single-Valued Neutrosophic Hybrid Arithmetic and Geometric Aggregation Operators and Their Decision-Making Method. Information. 2017; 8(3):84. https://doi.org/10.3390/info8030084
Chicago/Turabian StyleLu, Zhikang, and Jun Ye. 2017. "Single-Valued Neutrosophic Hybrid Arithmetic and Geometric Aggregation Operators and Their Decision-Making Method" Information 8, no. 3: 84. https://doi.org/10.3390/info8030084
APA StyleLu, Z., & Ye, J. (2017). Single-Valued Neutrosophic Hybrid Arithmetic and Geometric Aggregation Operators and Their Decision-Making Method. Information, 8(3), 84. https://doi.org/10.3390/info8030084