Vector-Circulant Matrices and Vector-Circulant Based Additive Codes over Finite Fields
Abstract
:1. Introduction
2. Vector-Circulant Matrices over Finite Fields
- (i)
- for all integers .
- (ii)
- for all integers .
3. Vector-Circulant Based Additive Codes over Finite Fields
- 1.
- The number of circulant matrices over is .
- 2.
- The number of vector-circulant matrix over is .
- 3.
- The number of matrices over is .
4. Future Works
- (i)
- C is self-orthogonal with respect to the trace Hermitian inner if and only if .
- (ii)
- C is complementary dual with respect to the trace Hermitian inner if and only if is invertible.
- (iii)
- If is a matrix whose rows are chosen from the rows of B, then the additive code generated by is a subcode of C, i.e., form a nested pair of additive codes.
Acknowledgments
Conflicts of Interest
References
- Danielsen, L.E.; Parker, M.G. Directed graph representation of half-rate additive codes over GF(4). Des. Codes Cryptogr. 2011, 59, 119–130. [Google Scholar] [CrossRef]
- Ezerman, M.F.; Jitman, S.; Ling, S.; Pasechnik, D.V. CSS-like constructions of asymmetric quantum codes. IEEE Trans. Inf. Theory 2013, 59, 6732–6754. [Google Scholar] [CrossRef]
- Gulliver, T.A.; Kim, J.-L. Circulant based extremal additive self-dual codes over GF(4). IEEE Trans. Inf. Theory 2004, 50, 359–366. [Google Scholar] [CrossRef]
- Han, S. Triple circulant codes based on quadratic residues. J. Chungcheong Math. Soc. 2010, 23, 91–98. [Google Scholar]
- Ketkar, A.; Klappenecker, A.; Kumar, S.; Sarvepalli, P.K. Nonbinary stabilizer codes over finite fields. IEEE Trans. Inf. Theory 2006, 52, 4892–4914. [Google Scholar] [CrossRef]
- Davis, P.J. Circulant Matrices, 2nd ed.; Chelesa Publishing: New York, NY, USA, 1994. [Google Scholar]
- Kiermaier, M.; Wassermann, A. Double and bordered α-circulant self-dual codes over finite commutative chain rings. In Proceedings of the Eleventh International Workshop on Algebraic and Combinatorial Coding Theory, Pamporovo, Bulgaria, 16–22 June 2008; pp. 144–150. [Google Scholar]
- Bierbrauer, J. Cyclic additive codes. J. Algebra 2012, 372, 661–672. [Google Scholar] [CrossRef]
- Bierbrauer, J.; Edel, Y.; Faina, G.; Marcugini, S.; Pambianco, F. Short additive quaternary codes. IEEE Trans. Inf. Theory 2009, 55, 952–954. [Google Scholar] [CrossRef]
- Blokhuis, A.; Brouwer, A.E. Small additive quaternary codes. Eur. J. Comb. 2004, 25, 161–167. [Google Scholar] [CrossRef]
- Danielsen, L.E.; Parker, M.G. On the classification of all self-dual additive codes over GF(4) of length up to 12. J. Comb. Theory Ser. A 2006, 113, 1351–1367. [Google Scholar] [CrossRef]
- Han, S.; Kim, J.-L. Formally self-dual additive codes over . J. Symb. Comput. 2010, 45, 787–799. [Google Scholar] [CrossRef]
- Bosma, W.; Cannon, J.J.; Playoust, C. The Magma algebra system I: The user language. J. Symb. Comput. 1997, 24, 235–265. [Google Scholar] [CrossRef]
- Guenda, K.; Jitman, S.; Gulliver, T.A. Constructions of good entanglement-assisted quantum error correcting codes. Des. Codes Cryptogr. 2017. [Google Scholar] [CrossRef]
- Boonniyom, K.; Jitman, S. Complementary daul subfield linear codes over finite fields. arXiv, 2016; arXiv:1605.06827. [Google Scholar]
n | v | ||
---|---|---|---|
2 | 2 | ||
3 | 2 | ||
4 | 3 | ||
5 | 3 | ||
6 | 4 | ||
7 | 4 | ||
8 | 4 | ||
9 | 4 | ||
10 | 5 | ||
11 | 5 | ||
12 | 6 | ||
13 | 6 |
n | k | v | ||
---|---|---|---|---|
5 | 4 | 4 | ||
6 | 4 | 4 | ||
5 | 4 | |||
7 | 4 | 5 | ||
6 | 4 | |||
8 | 4 | 6 | ||
6 | 5 | |||
9 | 6 | 6 | ||
8 | 5 | |||
10 | 8 | 6 | ||
11 | 8 | 6 | ||
10 | 6 | |||
13 | 12 | 6 |
© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jitman, S. Vector-Circulant Matrices and Vector-Circulant Based Additive Codes over Finite Fields. Information 2017, 8, 82. https://doi.org/10.3390/info8030082
Jitman S. Vector-Circulant Matrices and Vector-Circulant Based Additive Codes over Finite Fields. Information. 2017; 8(3):82. https://doi.org/10.3390/info8030082
Chicago/Turabian StyleJitman, Somphong. 2017. "Vector-Circulant Matrices and Vector-Circulant Based Additive Codes over Finite Fields" Information 8, no. 3: 82. https://doi.org/10.3390/info8030082
APA StyleJitman, S. (2017). Vector-Circulant Matrices and Vector-Circulant Based Additive Codes over Finite Fields. Information, 8(3), 82. https://doi.org/10.3390/info8030082