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Abstract: Circulant matrices have attracted interest due to their rich algebraic structures and various
applications. In this paper, the concept of vector-circulant matrices over finite fields is studied as
a generalization of circulant matrices. The algebraic characterization for such matrices has been
discussed. As applications, constructions of vector-circulant based additive codes over finite fields
have been given together with some examples of optimal additive codes over F4.
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1. Introduction

Classical and quantum information media, such as storage devices and communication systems,
are not one hundred percent reliable in practice because of noise or interference. Coding theory has
been introduced to deal with this problem since the 1960s. Additive codes constitute an important class
of codes due to their rich algebraic structures and wide applications in both classical and quantum
communications (see [1–5], and references therein).

For a prime power q and a positive integer n, Fq denotes the finite field of order q and Mn(Fq)

denotes the Fq-algebra of all n× n matrices whose entries are from Fq. Given α ∈ Fq \ {0}, a matrix
A ∈ Mn(Fq) is said to be α-twistulant [6] if

A =


a0 a1 . . . ak−2 an−1

αan−1 a0 . . . an−3 an−2

αan−2 αan−1 . . . an−4 an−3
...

...
. . .

...
...

αa1 αa2 . . . αan−1 a0


for some (a0, a1, . . . , an−1) ∈ Fn

q . Such a matrix is called circulant (resp., negacirculant) matrix when α = 1
(resp., α = −1). The set of all n × n circulant (resp., α-twistulant, negacirculant) matrices over
Fq is isomorphic to Fq[x]/〈xn − 1〉 (respectively, Fq[x]/〈xn − α〉, Fq[x]/〈xn + 1〉) as commutative
algebras [6]. Circulant matrices over finite fields and their well-known generalizations in the notions
of twistulant and negacirculant matrices have widely been studied and applied in many branches of
Mathematics. Recently, they have been applied to construct circulant based additive codes [3] and
double circulant codes [7] with optimal and extremal parameters.

In this paper, the concept of vector-circulant matrices over finite fields is studied as a generalization
of circulant matrices. We focus on the algebraic characterization of such matrices as well as their
applications. Constructions of vector-circulant based additive codes over finite fields are given together
with some examples of optimal additive codes over F4.

The paper is organized as follows. In Section 2, vector-circulant matrices over finite fields Fq are
studied together with the characterization of their algebraic structures. In Section 3, applications of
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vector-circulant matrices in constructing vector-circulant based additive codes over finite fields are
given. Examples of some optimal additive codes derived from vector-circulant matrices are provided
as well. In Section 4, suggested ideas for constructions of quantum codes based on these additive
codes are discussed.

2. Vector-Circulant Matrices over Finite Fields

In this section, a general concept of circulant matrices over finite fields is given. Properties of such
matrices are studied together with the algebraic characterizations.

For a given vector λ = (λ0, λ1, . . . , λn−1) ∈ Fn
q , let ρλ : Fn

q → Fn
q be an Fq-linear transformation

defined by

ρλ((v0, v1, . . . , vn−1)) = (0, v0, v1, . . . , vn−2) + vn−1λ

= (vn−1λ0, v0 + vn−1λ1, . . . , vn−2 + vn−1λn−1). (1)

The map ρλ defined above is called the λ-vector-cyclic shift on Fn
q and it is called the cyclic shift on

Fn
q if λ = (1, 0, 0, . . . , 0) ∈ Fn

q .
For a fixed vector λ ∈ Fn

q , a matrix A ∈ Mn(Fq) is said to be vector-circulant, or specifically,
λ-vector-circulant if

A =


a0 a1 · · · an−1

ρλ(a0 a1 · · · an−1)

ρ2
λ(a0 a1 · · · an−1)

...
ρn−1

λ (a0 a1 · · · an−1)


=: cirλ(a0, a1, . . . , an−1)

for some (a0, a1, . . . , an−1) ∈ Fn
q .

Clearly, a λ-vector-circulant matrix becomes the classical circulant and α-twistulant matrices
when the vectors λ are (1, 0, . . . , 0) and (α, 0, . . . , 0), respectively.

Example 1. Consider the finite field F4 = {0, 1, α, ω2 = 1 + ω}. The matrices 1 ω 0
0 1 ω

ω 0 ω2

 = cir(1,0,1)(1, ω, 0)

and 
1 ω 0 ω

ω2 1 ω ω

ω2 ω 1 0
0 ω2 ω 1

 = cir(ω,0,0,1)(1, ω, 0, ω)

are 3× 3 and 4× 4 vector-circulant matrices, respectively. They are obviously not circulant.

For a vector λ = (λ0, λ1, . . . , λn−1) ∈ Fn
q , let

λ(x) = λ0 + λ1x + · · ·+ λn−1xn−1 ∈ Fq[x]

be the corresponding polynomial representation of λ.
The linear transformation ρλ is key to determining the algebraic structures of vector-circulant

matrices. Some necessary properties of ρλ are determined in terms of λ(x) as follows. From



Information 2017, 8, 82 3 of 7

Equation (1), it is easily verified that ρλ is an Fq-linear transformation defined corresponding to
the matrix

Tλ =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
λ0 λ1 λ2 . . . λn−1


which is the companion matrix of the polynomial −λ(x) + xn in Fq[x], i.e., ρλ(v) = vTλ, for all v ∈ Fn

q .
Consequently, for 1 ≤ i, ρi

λ is an Fq-linear transformation defined corresponding to Ti
λ. By convention,

we set ρ0
λ to be the identity map and T0

λ = In. It follows that

cirλ(a0, a1, . . . , an−1) =
n−1

∑
i=0

aicirλ(Ei+1), (2)

where Ei = (0, . . . , 0, 1︸︷︷︸
ith

, 0, . . . , 0) ∈ Fn
q for 1 ≤ i ≤ n.

Observe that the matrix Tλ does not need to be invertible. For λ = (λ0, λ1, . . . , λn−1) ∈ Fn
q ,

the singularity of Tλ depends on λ0. By applying a suitable sequence of elementary row operations,
Tλ is equivalent to an n× n diagonal matrix diag(λ0, 1, 1, . . . , 1). Then, the next proposition follows.

Proposition 1. Let λ = (λ0, λ1, . . . , λn−1) ∈ Fn
q . Then T(λ0,λ1,...,λn−1)

is invertible if and only if λ0 6= 0.

Cirn,λ(Fq) denotes the set of all n × n λ-vector-circulant matrices over Fq. Consider Mn(Fq)

as a noncumulative algebra over Fq, Cirn,λ(Fq) is a commutative subalgebra of Mn(Fq). It follows
directly from the linearity of ρλ that Cirn,λ(Fq) is a subspace of the Fq-vector space Mn(Fq). Moreover,
by Equation (1), the set {cirλ(E1), cirλ(E2), . . . , cirλ(En)} can be verified to be a basis of Cirn,λ(Fq).

The following properties of companion matrices and vector-circulant based matrices are
well-known and play a role in applications.

Lemma 1. Let λ ∈ Fn
q . Then, the following statements hold.

(i) Tm
λ = cirλ(ρ

m
λ (E1)) for all integers 0 ≤ m.

(ii) Ti
λ = cirλ(Ei+1) for all integers 0 ≤ i < n.

Corollary 1. Let n be a positive integer and let λ ∈ Fn
q . Then Tm

λ ∈ Cirn,λ(Fq) for all 0 ≤ m.

It is well know that the set of n× n circulant matrices over Fq is a commutative subalgebra of
Mn(Fq) and it is isomorphic to Fq[x]/〈xn − λ(x)〉 as commutative algebras (see [6]). These results can
be easily generalized to the case of vector-circulant matrices as follows.

Theorem 1. Let n be a positive integer and let λ ∈ Fn
q . Then, Cirn,λ(Fq) is a commutative subalgebra of

Mn(Fq) with identity In.

Using the algebra isomorphism ϕ : Cirn,λ(Fq)→ Fq[x]/〈xn − λ(x)〉 defined by

cirλ(a0, a1, . . . , an−1) 7→
n−1

∑
i=0

aixi + 〈xn − λ(x)〉,

we have the following relation.

Theorem 2. Let n be a positive integer and let λ ∈ Fn
q . Then, Cirn,λ(Fq) is isomorphic to Fq[x]/〈xn − λ(x)〉

as commutative algebras.
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3. Vector-Circulant Based Additive Codes over Finite Fields

In this section, we restrict our study to a finite field Fp2 and focus on applications of
vector-circulant matrices over Fp2 in constructing additive codes over Fp2 . Since additive codes over
finite fields have applications in both classical and quantum communications (see, for example, [1–5]),
it is of natural interest to study this family of codes. Constructions of good/optimal additive codes
have been widely studied (see [3,8–10], and references therein). Characterizations of self-dual and
formally self-dual additive codes have been given in [11,12], respectively. Circulant based additive
codes and cyclic additive codes have been studied in [1,8], respectively. Here, we focus on the
construction of additive codes based on vector-circulant matrices. Examples of some additive codes
with good/optimal parameters derived from vector-circulant matrices are given as well.

A code of length n over Fp2 is defined to be a non-empty subset of Fn
p2 . A code C is said to be

additive if it is an additive subgroup of the additive group (Fn
p2 ,+). Throughout, every code is assumed

to be additive. It is known (see [3]) that C contains pk codewords for some 0 ≤ k ≤ 2n, and can
be defined by a k × n generator matrix, with entries from Fp2 , whose rows span C additively. We
regard an additive code of length n over Fp2 containing pk codewords as an (n, pk)p2 code. The rate of

an (n, pk)p2 code is defined to be rate(C) := k
2n . The Hamming weight of v ∈ Fn

p2 , denoted by wt(v),
is defined to be the number of nonzero components of v. The Hamming distance between u 6= v ∈ Fn

p2 is
defined as wt(u− v). The minimum distance of the code C, denoted by d(C), is the minimal Hamming
distance between any two distinct codewords of C. As C is additive, the minimum distance equals the
smallest nonzero weight of any codewords in C. An (n, pk)p2 code with minimum distance d is called
an (n, pk, d)p2 code. The efficiency of codes is determined by their minimum distances. Precisely, a
code with high minimum distance is more useful in practice.

Given λ ∈ Fn
p2 , a λ-vector-circulant based additive code over Fp2 is defined to be the code additively

spanned by the rows of a λ-vector-circulant matrix of the form

G := cirλ(a0, a1, . . . , an−1) =


a0 a1 · · · an−1

ρλ(a0 a1 · · · an−1)

ρ2
λ(a0 a1 · · · an−1)

...
ρn−1

λ (a0 a1 · · · an−1)

 .

Such a code is called a circulant based additive code if λ = (1, 0, . . . , 0) and it is called a λ-twistulant
based additive code if λ = (λ, 0, . . . , 0). An advantage of this construction is that there are typically much
more additive codes than circulant based or twistulant based additive codes [3] due to the various
choices of λ.

Remark 1. We have made the following observations for the number of possible choices of generator matrices
for additive codes of length n over Fp2 .

1. The number of n× n circulant matrices over Fp2 is |Cirn,(1,0,...,0)(Fp2)| = p2n.

2. The number of n× n vector-circulant matrix over Fp2 is p2n|Cirn,(1,0,...,0)(Fp2)| = p4n.

3. The number of n× n matrices over Fp2 is |Mn(Fp2)| = p2n2
.

We note that each value above does not determine explicitly the number of its corresponding additive codes
since two different matrices in Mn(Fp2) can generate the same additive code. The advantage of searching for
good additive codes from vector-circulant matrices is that there are much more choices of generator matrices than
circulant matrices and the search space is not too large as Mn(Fp2).
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It is not difficult to see that the rate of a vector-circulant based additive code is

rate(C) =
the number of maximal Fp – linearly independent rows of G

2n
≤ 1

2
.

In the case where k = n, an (n, pn)p2 code has rate 1
2 and it is called a half-rate code. It follows from

the Singleton bound [1] that any half-rate additive code over Fp2 must satisfy

d ≤
⌊n

2

⌋
+ 1.

An (n, pn)p2 code C is said to be extremal if it attains the equality in the Singleton bound, and
near-extremal if it has minimum distance

⌊ n
2
⌋
.

Using the computer algebra system Magma [13], a procedure to generate vector-circulant based
additive codes of small lengths over F4 = {0, 1, α, α2 = 1 + α} is implemented. Half-rate additive
codes over F4 with highest minimum distances of length up to 13 are shown in Table 1. We note that
the codes of length 2 to 7 are extremal and the codes of length 8 to 13 are near-extremal. Comparing
Table 5 in [1], and Table 1 in [9], the codes given in Table 1 are optimal.

Table 1. Half-rate vector-circulant based additive codes of length n over F4 = {0, 1, α, α2 = 1 + α}
generated by cirλ(v).

n λ v d(C)

2 (1, 1) (α, 1) 2
3 (1, 0, α) (α, 1, 1) 2
4 (1, 0, 0, 1) (1, α, 1, 1) 3
5 (1, 0, 0, 0, α) (1, 0, α, 1, 1) 3
6 (1, 0, 0, 0, 0, 0) (α, α2, α, 1, 1, 1) 4
7 (1, 0, 1, 0, 0, 0, 0) (0, 1, α, 1, 1, 1, 1) 4
8 (1, 0, 0, 0, 0, 0, 0, α) (0, α, α2, α2, 1, 1, 1, 1) 4
9 (1, 0, 0, 0, 0, 0, 0, 0, 1) (a2, α, 1, 1, 1, 1, 1, 1, 1) 4
10 (1, 0, 0, 0, 0, 0, 0, 0, 0, 0) (0, α, α, 1, α, 1, 1, 1, 1, 1) 5
11 (1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0) (0, α, α2, α, 1, 1, 1, 1, 1, 1, 1) 5
12 (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) (0, 1, α2, α2, 1, α, 1, 1, 1, 1, 1, 1) 6
13 (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) (0, α, α2, 1, 1, α, 1, 1, 1, 1, 1, 1, 1) 6

Examples of good vector-circulant based additive codes with rate less than 1
2 are presented in

Table 2. Compared with Table 1 in [9], the codes given in Table 2 are optimal.

Table 2. Vector-circulant based (n, 2k)4 codes over F4 = {0, 1, α, α2 = 1 + α} generated by cirλ(v).

n k λ v d(C)

5 4 (1, 0, 0, 0, 0) (α, 0, α, 1, 1) 4

6 4 (1, 0, 0, 0, 0, 0) (α2, 0, α, 1, 1, 1) 4
5 (1, 0, 0, 0, 0, 0) (α2, α, 0, 1, 1, 1) 4

7 4 (α, 0, 0, 0, 0, 0, 1) (0, α2, 1, α2, α2, 0, 1) 5
6 (1, α, 0, 0, 0, 0, 0) (α, α, 0, 0, 1, 1, 1) 4

8 4 (1, 0, 0, 0, 0, 0, 0, α) (α, α2, α, α, 0, α2, 1, 0) 6
6 (1, 1, 0, 0, 0, 0, 0, 0) (α2, 1, 0, 0, α2, 1, α, α2) 5

9 6 (1, 0, 0, 0, 0, 0, 0, 0, 0) (1, α, 1, 1, α, 1, 0, 0, 0) 6
8 (1, 0, 0, 0, 0, 0, 0, 0, 0) (α2, 1, 1, α, 1, 0, 0, 0, 0) 5

10 8 (1, 0, 0, 0, 0, 0, 0, 0, 0, 0) (α, 1, α, 0, 1, 1, 1, 0, 0, 0) 6

11 8 (0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 1, 0, 0, α, α2, 1, α, α2) 6
10 (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) (1, α2, α2, 0, α, α, 1, 0, 0, 0, 0) 6

13 12 (0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) (0, α2, 1, α, α, 1, 0, 1, 1, 1, 1, 1, 1) 6
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4. Future Works

Additive codes and their duals defined with respect to the trace Hermitian inner product
(see [2]) can be applied in constructing quantum codes (see [2,3,5]). In [5], symmetric quantum
codes were constructed from self-orthogonal additive codes. Nested pairs of additive codes were
used in constructing asymmetric quantum codes [2]. In [14], the hull of codes and complementary
dual codes were applied for constructions of entanglement-assisted quantum codes. We note that
the said properties for vector-circulant based additive codes can be determined directly from their
corresponding vector-circulant matrices. Let C be an additive code additively generated by a
vector-circulant matrix G and let B be a matrix whose rows form maximal Fp-linearly independent
rows of G. For a given matrix A := [aij] over Fp2 , let A = [ap

ij]. Then, the following characterizations
can be derived using ideas from [15].

(i) C is self-orthogonal with respect to the trace Hermitian inner if and only if BBT − BBT = 0.

(ii) C is complementary dual with respect to the trace Hermitian inner if and only if BBT − BBT is
invertible.

(iii) If B′ is a matrix whose rows are chosen from the rows of B, then the additive code C′ generated
by B′ is a subcode of C, i.e., C′ ⊆ C form a nested pair of additive codes.

Based on these properties, quantum codes can be constructed using suitable vector-circulant
based additive codes and methods in [2,5,14].

For future studies, characterizations and constructions of vector-circulant based additive codes
with additional properties such as self-dual, self-orthogonal, and complementary dual are therefore
interesting problems. Computations for vector-circulant based additive codes with larger lengths are
also interesting.
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