Discovering and Understanding City Events with Big Data: The Case of Rome
Abstract
:1. Introduction and Context
2. Motivations and Problem Definition
3. The Analytical Process
- a Resident is an individual who lives and works in A, and therefore his/her presence is significant across all days and all time slots in A;
- a Dynamic Resident is an individual who lives A, but works/studies in a different area B. The presence in A is expected to be always significant, excepted during working/studying days and working/studying hours;
- a Commuter is an individual who lives in a different area B but works/studies in A. The presence in A is expected to be almost exclusively concentrated during working/studying days and working/studying hours;
- a Visitor is an individual who lives and works/studies outside, and visits A only once or occasionally. It is a Visitor if the user perform at least two calls during the stay.
- a Passing by is similar to a Visitor category but it contains only users performing a single call in A during the entire period of observation. This category is useful to identify, and filter when necessary, people in transit, or characterize particular kinds of visits.
3.1. Sociometer
3.2. Scaling up to Big Data
4. A Real Case Study: City of Rome
4.1. Data Acquisition
4.2. The Analysis
- 3M residents
- 3M dynamic residents
- 1M commuters
- 9M passing by
- 1.5M visitors
5. Validation and Empirical Evaluation of the Results
5.1. Stereotypes and Archetypes
5.2. Empirical Evaluation
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lane, N.D.; Miluzzo, E.; Hong, L.; Peebles, D.; Choudhury, T.; Campbell, A.T. A survey of mobile phone sensing. IEEE Commun. Mag. 2010, 48. [Google Scholar] [CrossRef]
- Quercia, D.; Lathia, N.; Calabrese, F.; Lorenzo, G.D.; Crowcroft, J. Recommending Social Events from Mobile Phone Location Data. In Proceedings of the IEEE 10th International Conference on Data Mining (ICDM), Sydney, Australia, 13–17 December 2010; pp. 971–976. [Google Scholar]
- Calabrese, F.; Colonna, M.; Lovisolo, P.; Parata, D.; Ratti, C. Real-Time Urban Monitoring Using Cell Phones: A Case Study in Rome. IEEE Trans. Intell. Transp. Syst. 2011, 12, 141–151. [Google Scholar] [CrossRef]
- Eagle, N.; Pentland, A.; Lazer, D. Inferring friendship network structure by using mobile phone data. Proc. Natl. Acad. Sci. USA 2009, 106, 15274–15278. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Pedreschi, D.; Song, C.; Giannotti, F.; Barabasi, A.L. Human mobility, social ties, and link prediction. In Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego, CA, USA, 21–24 August 2011. [Google Scholar]
- Furletti, B.; Gabrielli, L.; Garofalo, G.; Giannotti, F.; Milli, L.; Nanni, M.; Pedreschi, D.; Vivio, R. Use of mobile phone data to estimate mobility flows. Measuring urban population and inter-city mobility using big data in an integrated approach. In Proceedings of the 47th Meeting of the Italian Statistical Society (SIS 2014), Cagliari, Italy, 11–13 June 2014. [Google Scholar]
- Barcaroli, G.; De Francisci, S.; Scannapieco, M.; Summa, D. Dealing with Big data for Official Statistics: IT Issues. In Proceedings of the Meeting on the Management of Statistical Information Systems (MSIS 2014), Dublin, Ireland, 14–16 April 2014. [Google Scholar]
- Nanni, M.; Trasarti, R.; Furletti, B.; Gabrielli, L.; Mede, P.V.D.; Bruijn, J.D.; Romph, E.D.; Bruil, G. MP4-A Project: Mobility Planning For Africa. In Proceedings of the D4D Challenge—3rd Conference on the Analysis of Mobile Phone datasets (NetMob 2013), Cambridge, MA, USA, 1–3 May 2013. [Google Scholar]
- Andrienko, G.; Andrienko, N.; Fuchs, G. Multi-perspective analysis of D4D fine resolution data. In Proceedings of the Orange D4D Challange 2013, Cambridge, MA, USA, 1–3 May 2013; pp. 383–396. [Google Scholar]
- Ratti, C.; Sevtsuk, A.; Huang, S.; Pailer, R. Mobile Landscapes: Graz in Real Time; Springer: Berlin/Heidelberg, Germany, 2007; pp. 433–444. [Google Scholar]
- Calabrese, F.; Ferrari, L.; Blondel, V.D. Urban Sensing Using Mobile Phone Network Data: A Survey of Research. ACM Comput. Surv. 2014, 47, 25. [Google Scholar] [CrossRef]
- Gariazzo, C.; Pelliccioni, A.; Bolignano, A. A dynamic urban air pollution population exposure assessment study using model and population density data derived by mobile phone traffic. Atmos. Environ. 2016, 131, 289–300. [Google Scholar] [CrossRef]
- Furletti, B.; Gabrielli, L.; Trasarti, R.; Giannotti, F.; Pedreschi, D. City users’ classification with mobile phone data. In Proceedings of the 2015 IEEE International Conference on Big Data, Santa Clara, CA, USA, 29 October–1 November 2015; pp. 1007–1012. [Google Scholar]
- Gundogdu, D.; Incel, O.D.; Salah, A.A.; Lepri, B. Countrywide arrhythmia: Emergency event detection using mobile phone data. EPJ Data Sci. 2016, 5, 25. [Google Scholar] [CrossRef]
- Dong, Y.; Pinelli, F.; Gkoufas, Y.; Nabi, Z.; Calabrese, F.; Chawla, N.V. Inferring Unusual Crowd Events from Mobile Phone Call Detail Records. In Machine Learning and Knowledge Discovery in Databases, Proceedings of the European Conference (ECML PKDD 2015), Porto, Portugal, 7–11 September 2015; Appice, A., Rodrigues, P.P., Santos Costa, V., Gama, J., Jorge, A., Soares, C., Eds.; Springer: Cham, Switzerland, 2015; pp. 474–492. [Google Scholar]
- Giulio Barcaroli, P.R. Big Data in Official Statistics: Ongoing Work at Statistics Italy. Available online: https://ec.europa.eu/jrc/sites/jrcsh/files/j3-bigdata-03-Barcaroli_Righi.pdf (accessed on 1 January 2017).
- Basu, A.; Monreale, A.; Corena, J.C.; Giannotti, F.; Pedreschi, D.; Kiyomoto, S.; Miyake, Y.; Yanagihara, T.; Trasarti, R. A Privacy Risk Model for Trajectory Data. In Proceedings of the Trust Management VIII—8th IFIP WG 11.11 International Conference (IFIPTM 2014), Singapore, 7–10 July 2014; pp. 125–140. [Google Scholar]
- Soltani, S. On the use of the wavelet decomposition for time series prediction. Neurocomputing 2002, 48, 267–277. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Furletti, B.; Trasarti, R.; Cintia, P.; Gabrielli, L. Discovering and Understanding City Events with Big Data: The Case of Rome. Information 2017, 8, 74. https://doi.org/10.3390/info8030074
Furletti B, Trasarti R, Cintia P, Gabrielli L. Discovering and Understanding City Events with Big Data: The Case of Rome. Information. 2017; 8(3):74. https://doi.org/10.3390/info8030074
Chicago/Turabian StyleFurletti, Barbara, Roberto Trasarti, Paolo Cintia, and Lorenzo Gabrielli. 2017. "Discovering and Understanding City Events with Big Data: The Case of Rome" Information 8, no. 3: 74. https://doi.org/10.3390/info8030074
APA StyleFurletti, B., Trasarti, R., Cintia, P., & Gabrielli, L. (2017). Discovering and Understanding City Events with Big Data: The Case of Rome. Information, 8(3), 74. https://doi.org/10.3390/info8030074