Design of Hybrid Wired/Wireless Fieldbus Network for Turbine Power Generation System
Abstract
:1. Introduction
2. Architecture of Hybrid Wired/Wireless Fieldbus Networks
2.1. Wired Fieldbus Networks and WICN
2.2. Related Works on Hybrid Fieldbus Networks
2.3. Hybrid Wired/Wireless Fieldbus Network Architecture
3. Implementation of a Hybrid Wired/Wireless Fieldbus Network
3.1. Shared Data Model in the Gateway
3.2. Data Transmission Mechanisms
3.2.1. Data Transmission from WICN Terminal Nodes to the Gateway’s WICN Base Station
3.2.2. Data Transmission from the Gateway’s WICN Base Station to WICN Terminal Nodes
3.2.3. Data Transmission between a MODBUS/TCP Server Station and the Gateway’s MODBUS/TCP Client Station
3.2.4. Data Transmission between a PROFIBUS-DP Master Station and the Gateway’s PROFIBUS-DP Slave Station
4. Experimental Performance Evaluation
4.1. Gateway Implementation and System Configuration
4.2. Experimental Results
4.2.1. Polling Period Tpp with Different Number of Nodes and Length of Data Packets in WICN
4.2.2. Control Cycle Time Tctrl with Different Wireless Nodes in the Hybrid Wired/Wireless Fieldbus Network
4.2.3. Converting Time in the Gateway
4.2.4. Packet Loss Rate for the Whole Hybrid Network
5. Application
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Li, X.; Li, D.; Wan, J.; Vasilakos, A.V.; Lai, C.F.; Wang, S. A Review of Industrial Wireless Networks in the Context of Industry 4.0. Wirel. Netw. 2015. [Google Scholar] [CrossRef]
- Chang, C.; Lee, C. A secure single sign-on mechanism for distributed computer networks. IEEE Trans. Ind. Electron. 2012, 59, 629–637. [Google Scholar] [CrossRef]
- Chen, J.; Cao, X.; Cheng, P.; Xiao, Y.; Sun, Y. Distributed collaborative control for industrial automation with wireless sensor and actuator networks. IEEE Trans. Ind. Electron. 2010, 57, 4219–4230. [Google Scholar] [CrossRef]
- Flammini, A.; Ferrari, P.; Marioli, D.; Sisinni, E.; Taroni, A. Wired and wireless sensor networks for industrial applications. Microelectron. J. 2009, 40, 1322–1336. [Google Scholar] [CrossRef]
- Sisinni, E.; Depari, A.; Flammini, A. Design and implementation of a wireless sensor network for temperature sensing in hostile environments. Sens. Actuators A. 2016, 237, 47–55. [Google Scholar] [CrossRef]
- Flammini, A.; Marioli, D.; Sisinni, E.; Taroni, A. Design and implementation of a wireless fieldbus for plastic machineries. IEEE Trans. Ind. Electron. 2009, 56, 747–756. [Google Scholar] [CrossRef]
- Kjellsson, J.; Vallestad, A.E.; Steigmann, R.; Dzung, D. Integration of a Wireless I/O interface for PROFIBUS and PROFINET for factory automation. IEEE Trans. Ind. Electron. 2009, 56, 4279–4288. [Google Scholar] [CrossRef]
- Lehr, W.H.; Chapin, J.M. On the convergence of wired and wireless access network architectures. Inf. Econ. Policy. 2010, 22, 33–41. [Google Scholar] [CrossRef]
- Maestro, J.A.; Reviriego, P. Energy efficiency in industrial Ethernet: The case of powerlink. IEEE Trans. Ind. Electron. 2010, 57, 2896–2903. [Google Scholar] [CrossRef]
- Gaj, P.; Jasperneite, J.; Felser, M. Computer Communication within Industrial Distributed Environment—A Survey. IEEE Trans. Ind. Inform. 2013, 9, 182–189. [Google Scholar] [CrossRef]
- Gungor, V.C.; Lu, B.; Hancke, G.P. Opportunities and challenges of wireless sensor networks in smart grid. IEEE Trans. Ind. Electron. 2010, 57, 3557–3564. [Google Scholar] [CrossRef]
- Luo, R.C.; Chen, O. Mobile sensor node deployment and asynchronous power management for wireless sensor networks. IEEE Trans. Ind. Electron. 2012, 59, 2377–2385. [Google Scholar] [CrossRef]
- Vitturi, S.; Tramarin, F.; Seno, L. Industrial Wireless Networks: The Significance of Timeliness in Communication Systems. IEEE Ind. Electron. Mag. 2013, 7, 40–51. [Google Scholar] [CrossRef]
- Seno, L.; Tramarin, F.; Vitturi, S. Performance of Industrial Communication Systems: Real Application Contexts. IEEE Ind. Electron. Mag. 2012, 6, 27–37. [Google Scholar] [CrossRef]
- Alves, M.; Tovar, E. Real-time communications over wired/wireless PROFIBUS networks supporting inter-cell mobility. Comput. Netw. 2007, 51, 2994–3012. [Google Scholar] [CrossRef]
- Elarag, H.; Moedinger, A.; Hogg, C. TCP friendly protocols for media streams over heterogeneous wired-wireless networks. Comput. Commun. 2008, 31, 2242–2256. [Google Scholar] [CrossRef]
- Miorandi, D.; Vitturi, S. Hybrid wired/wireless implementations of PROFIBUS DP: A feasibility study based on Ethernet and Bluetooth. Comput. Commun. 2004, 27, 946–960. [Google Scholar] [CrossRef]
- Willig, A. Polling-based MAC protocols for improving real-time performance in a wireless PROFIBUS. IEEE Trans. Ind. Electron. 2003, 50, 806–818. [Google Scholar] [CrossRef]
- Meike, D.; Pellicciari, M.; Berselli, G. Energy efficient use of multirobot production lines in the automotive industry: Detailed system modeling and optimization. IEEE Trans. Autom. Sci. Eng. 2014, 11, 798–809. [Google Scholar] [CrossRef]
- Chang, Q.; Xiao, G.; Biller, S.; Li, L. Energy saving opportunity analysis of automotive serial production systems (March 2012). IEEE Trans. Autom. Sci. Eng. 2013, 10, 334–342. [Google Scholar] [CrossRef]
- Baker, N. ZigBee and Bluetooth strengths and weaknesses for industrial applications. J. Comput. Control Eng. 2005, 16, 20–25. [Google Scholar] [CrossRef]
- Ferrari, P.; Flammini, A.; Marioli, D.; Rinaldi, S.; Sisinni, E. On the implementation and performance assessment of a wirelessHART distributed packet analyzer. IEEE Trans. Instrum. Meas. 2010, 59, 1342–1352. [Google Scholar] [CrossRef]
- Petersen, S.; Carlsen, S. WirelessHART versus ISA100. 11a: The format war hits the factory floor. IEEE Ind. Electron. Mag. 2011, 5, 23–34. [Google Scholar] [CrossRef]
- Song, H.; Mok, A.K.; Chen, D.; Lucas, M.; Nixon, M. WirelessHART: Applying wireless technology in real-time industrial process control. In Proceeding of IEEE Real-Time and Embedded Technology and Applications Symposium, St. Louis, MO, USA, 22–24 April 2008; pp. 377–386.
- Wang, H.; Hou, W.; Fei, M. Polling-based protocol gateway for the Integration of hybrid wired/wireless industrial control networks. In Proceedings of the 29th Chinese Control Conference, Beijing, China, 29–31 July 2010; pp. 5772–5777.
- Mondal, S.A.; Luqman, F.B. Improving TCP performance over wired–wireless networks. Comput. Netw. 2007, 51, 3799–3811. [Google Scholar] [CrossRef]
- Jiang, D.; Fei, M.; Wang, H.; Li, T. Wireless network performance test in hybrid wired/wireless network system. In Proceedings of the 8th World Congress on Intelligent Control and Automation, Taipei, Taiwan, 21–25 June 2011; pp. 1029–1034.
- Rutagangibwa, V.; Krishnamurthy, B. A Survey on the Implementation of Real Time Systems for Industrial Automation Applications. Int. J. Innov. Res. Sci. Technol. 2015, 1, 174–177. [Google Scholar]
- Wu, L.; Xu, S.; Jiang, D. MFAHP: A novel method on the performance evaluation of the industrial wireless networked control system. In Proceedings of the Sixth International Conference on Electronics and Information Engineering, Dalian, China, 26–28 September 2015.
- Bertocco, M.; Narduzzi, C.; Tramarin, F. Estimation of the delay of network devices in hybrid wired/wireless real-time industrial communication systems. In Proceedings of the 2012 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Graz, Austria, 13–16 May 2012.
- Ma, H.; Fei, M.; Yang, Z.; Wang, H. Wireless networked learning control system based on Kalman filter and biogeography-based optimization method. Trans. Inst. Meas. Control 2013. [Google Scholar] [CrossRef]
Methods | OSI Reference Models | Advantages | Disadvantages | Examples |
---|---|---|---|---|
ODBC data mapping-based method | Application layer | Easy implementation and configuration; no need to change system architectures | Do not assure real-time performance | References [25,26] |
Bridge-based method | Data link layer | Short response time and timeout; simultaneously handle the traffic in different networks | Need highly similar protocols between different networks | References [27,28] |
Repeater-based method | Physical Layer | Multiple segments and multiple wireless cells are interconnected; create a broadcast network | Do not assure the synchronization, and queuing delays may appear | References [13,28] |
Gateway-based method | All seven OSI layers | Easily convert data stack between different protocols | Time delay of information exchange is uncertainty in a gateway | Reference [29] |
15 Nodes and 20 Bytes (ms) | 15 Nodes and 12 Bytes (ms) | 15 Nodes and 4 Bytes (ms) | 10 Nodes and 4 Bytes (ms) | 5 Nodes and 4 Bytes (ms) | |
---|---|---|---|---|---|
Mean | 78.4 | 79.3 | 78.9 | 63.3 | 47.9 |
Confidence interval | (75.3, 81.5) | (75.9, 82.7) | (75.7, 82.1) | (61.3, 65.4) | (44.5, 49.3) |
20 Nodes (ms) | 15 Nodes (ms) | 10 Nodes (ms) | 5 Nodes (ms) | |
---|---|---|---|---|
Mean | 78.2 | 56.3 | 46.1 | 43.4 |
Confidence interval | (75.9, 80.4) | (55.1, 57.5) | (45.3, 46.9) | (42.8, 44.0) |
Performance | PROFIBUS-DP Network | MODBUS/TCP Network | WICN | |||
---|---|---|---|---|---|---|
Network performance (Mean transmission time) | Control performance (Mean measurement value) | Network performance (Mean transmission time) | Control performance (Mean measurement value) | Network performance (Mean transmission time) | Control performance (Mean measurement value) | |
Indoor Temperature | -- | -- | -- | -- | 22.8 ms | 20.35 °C |
Fuel Flow | -- | -- | 60.1 ms | 8.42 × 10−5 m3·s−1 | 56.2 ms | 8.39 × 10−5 m3·s−1 |
Boiler Pressure | -- | -- | 42.7 ms | 380,629.5 Pa | 33.4 ms | 38,0524.1 Pa |
Boiler Temperature | -- | -- | -- | -- | 25.3 ms | 142.17 °C |
Valve Position | -- | -- | 59.4 ms | 32.71% | 49.7 ms | 32.06% |
Turbine Inlet Pressure | 32.8 ms | 32110.7 Pa | 43.5 ms | 32,291.3 Pa | 31.6 ms | 32,219.5 Pa |
Turbine Inlet Temperature | -- | -- | -- | -- | 22.8 ms | 102.71 °C |
Turbine Outlet Pressure | 37.2 ms | 7800.3 Pa | 44.1 ms | 7784.3 Pa | 34.5 ms | 7805.6 Pa |
Turbine Outlet Temperature | -- | -- | -- | -- | 23.2 ms | 98.33 °C |
Generator Speed | 62.8 ms | 2614 r·min−1 | -- | -- | 51.7 ms | 2586 r·min−1 |
Generator Voltage | 67.1 ms | 3.25 V | -- | -- | 50.2 ms | 3.15 V |
Generator Current | 64.0 ms | 0.12 A | -- | -- | 52.1 ms | 0.11 A |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, S.; Fei, M.; Wang, H. Design of Hybrid Wired/Wireless Fieldbus Network for Turbine Power Generation System. Information 2016, 7, 37. https://doi.org/10.3390/info7030037
Xu S, Fei M, Wang H. Design of Hybrid Wired/Wireless Fieldbus Network for Turbine Power Generation System. Information. 2016; 7(3):37. https://doi.org/10.3390/info7030037
Chicago/Turabian StyleXu, Sheng, Minrui Fei, and Haikuan Wang. 2016. "Design of Hybrid Wired/Wireless Fieldbus Network for Turbine Power Generation System" Information 7, no. 3: 37. https://doi.org/10.3390/info7030037
APA StyleXu, S., Fei, M., & Wang, H. (2016). Design of Hybrid Wired/Wireless Fieldbus Network for Turbine Power Generation System. Information, 7(3), 37. https://doi.org/10.3390/info7030037