On Solving the Fuzzy Customer Information Problem in Multicommodity Multimodal Routing with Schedule-Based Services
Abstract
:1. Introduction
2. Notations
3. Fuzzy Characteristics of the Customer Information
3.1. Fuzzy Demanded Volume
3.2. Fuzzy Soft Time Window
4. Model Formulation
- Objective Function:
- Subject to:
- Objective Function:
- Subject to:
5. Solution Strategy
5.1. Crisp Equivalent of the Fuzzy Chance Constraint Sets
5.2. Linearization of the Nonlinear Constraint Sets
5.3. Final Formulation of the Problem (M3)
- Objective Function:
- Subject to:
6. Numerical Case Study and Sensitivity Analysis
For k=1:|K| |
Generate a random number ; |
Calculate its membership according to Equation (20); |
Generate a random number ∈[0, 1]; |
If ; |
→the actual volume of commodity k; |
End |
End |
7. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Sun, Y.; Lang, M. Modeling the Multicommodity Multimodal Routing Problem with Schedule-Based Services and Carbon Dioxide Emission Costs. Math. Probl. Eng. 2015, 2015, 406218. [Google Scholar] [CrossRef]
- Sun, Y.; Lang, M.; Wang, D. Optimization Models and Solution Algorithms for Freight Routing Planning Problem in the Multi-modal Transportation Networks: A Review of the State-of-the-Art. Open Civ. Eng. J. 2015, 9, 714–723. [Google Scholar] [CrossRef]
- Janic, M. Modelling the full costs of an intermodal and road freight transport network. Transp. Res. Part D Transp. Environ. 2007, 12, 33–44. [Google Scholar] [CrossRef]
- Liao, C.H.; Tseng, P.-H.; Lu, C.-S. Comparing carbon dioxide emissions of trucking and intermodal container transport in Taiwan. Transp. Res. Part D Transp. Environ. 2009, 14, 493–496. [Google Scholar] [CrossRef]
- Zhang, S. Introduction to multimodal transport in America and Canada. Containerization 2009, 20, 6–9. [Google Scholar] [CrossRef]
- Min, H. International intermodal choices via chance-constrained goal programming. Transp. Res. Part A Gen. 1991, 25, 351–362. [Google Scholar] [CrossRef]
- Barnhart, C.; Ratliff, H.D. Modeling intermodal routing. J. Bus. Logist. 1993, 14, 205–223. [Google Scholar]
- Boardman, B.S.; Malstrom, E.M.; Butler, D.P.; Cole, M.H. Computer assisted routing of intermodal shipments. Comput. Ind. Eng. 1997, 33, 311–314. [Google Scholar] [CrossRef]
- Lozano, A.; Storchi, G. Shortest viable path algorithm in multimodal networks. Transp. Res. Part A Policy Pract. 1997, 35, 225–241. [Google Scholar] [CrossRef]
- Lam, S.K.; Srikanthan, T. Accelerating the K-Shortest Paths Computation in Multimodal Transportation Networks. In Proceedings of the IEEE 5th International Conference on Intelligent Transportation Systems, Singapore, Singapore, 3–6 September 2002; pp. 491–495.
- Boussedjra, M.; Bloch, C.; Moudni, A.E.I. An exact method to find the intermodal shortest path (ISP). In Proceedings of the 2004 IEEE International Conference on Networking, Sensing and Control, Taipei, Taiwan, 21–23 March 2004; pp. 1075–1080.
- Zhang, J.Y.; Guo, Y.H. A multimode transportation network assignment model. J. China Railw. Soc. 2004, 24, 114–116. [Google Scholar]
- Zhang, Y.H.; Lin, B.L.; Liang, D.; Gao, H.Y. Research on a Generalized Shortest Path Method of Optimizing Intermodal Transportation Problems. J. China Railw. Soc. 2006, 28, 22–26. [Google Scholar]
- Reddy, V.R.; Kasilingam, R.G. Intermodal transportation considering transfer costs. Available online: http://d.wanfangdata.com.cn/ExternalResource/tdxb201110001%5E1 (accessed on 3 March 2016).
- Winebrake, J.J.; Corbett, J.J.; Falzarano, A.; Hawker, J.S.; Korfmacher, K.; Ketha, S.; Zilora, S. Assessing energy, environmental, and economic tradeoffs in intermodal freight transportation. J. Air Waste Manag. Assoc. 2008, 58, 1004–1013. [Google Scholar] [CrossRef]
- Kim, H.J.; Chang, Y.T.; Lee, P.T.W.; Shin, S.H.; Kim, M.J. Optimizing the transportation of international container cargoes in Korea. Marit. Pol. Mgmt. Flagship J. Int. Ship. Port Res. 2008, 35, 103–122. [Google Scholar] [CrossRef]
- Chang, Y.T.; Lee, P.; Kim, H.J.; Shin, S.H. Optimization model for transportation of container cargoes considering short sea shipping and external cost: South Korean case. Transp. Res. Rec. J. Transp. Res. Board 2010, 2166, 99–108. [Google Scholar] [CrossRef]
- Liu, J.; He, S.W.; Song, R.; Li, H.D. Study on optimization of dynamic paths of intermodal transportation network based on alternative set of transport modes. J. China Railw. Soc. 2011, 33, 1–6. [Google Scholar]
- Cho, J.H.; Kim, H.S.; Choi, H.R. An intermodal transport network planning algorithm using dynamic programming-a case study: from Busan to Rotterdam in intermodal freight routing. Appl. Intell. 2012, 36, 529–541. [Google Scholar] [CrossRef]
- Sun, Y.; Lang, M.X. Bi-objective optimization for multi-modal transportation routing planning problem based on Pareto optimality. J. Ind. Eng. Manag. 2015, 8, 1195–1217. [Google Scholar] [CrossRef]
- Xiong, G.W.; Wang, Y. Best routes selection in multimodal networks using multi-objective genetic algorithm. J. Combin. Optim. 2014, 28, 655–673. [Google Scholar] [CrossRef]
- Teodorović, D.; Pavković, G. The fuzzy set theory approach to the vehicle routing problem when demand at nodes is uncertain. Fuzzy Sets Syst. 1996, 82, 307–317. [Google Scholar] [CrossRef]
- Erbao, C.; Mingyong, L. A hybrid differential evolution algorithm to vehicle routing problem with fuzzy demands. J. Comput. Appl. Math. 2009, 231, 302–310. [Google Scholar] [CrossRef]
- López-Castro, L.F.; Montoya-Torres, J.R. Vehicle routing with fuzzy time windows using a genetic algorithm. In Proceedings of the 2011 IEEE Workshop on Computational Intelligence in Production And Logistics Systems, Paris, France, 11–15 April 2011; pp. 1–8.
- Lium, A.G.; Crainic, T.G.; Wallace, S.W. A study of demand stochasticity in service network design. Transp. Sci. 2009, 43, 144–157. [Google Scholar] [CrossRef]
- Bai, R.; Wallace, S.W.; Li, J.; Chong, A.Y.L. Stochastic service network design with rerouting. Transp. Res. Part B Methodol. 2014, 60, 50–65. [Google Scholar] [CrossRef]
- Ji, X.; Iwamura, K.; Shao, Z. New models for shortest path problem with fuzzy arc lengths. Appl. Math. Model. 2007, 31, 259–269. [Google Scholar] [CrossRef]
- Ghannadpour, S.F.; Noori, S.; Tavakkoli-Moghaddam, R.; Ghoseiri, K. A multi-objective dynamic vehicle routing problem with fuzzy time windows: Model, solution and application. Appl. Soft Comput. 2014, 14, 504–527. [Google Scholar] [CrossRef]
- Liu, B.; Iwamura, K. Chance constrained programming with fuzzy parameters. Fuzzy Sets Syst. 1998, 94, 227–237. [Google Scholar] [CrossRef]
Rail service No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
origin | 1 | 1 | 2 | 2 | 3 | 3 | 3 |
loading start time | 9 | 13 | 15 | 21 | 23 | 1 | 17 |
loading cutoff time | 10.5 | 13.5 | 16 | 24 | 25 | 1.5 | 20 |
departure time | 11 | 14 | 16.5 | 24.5 | 25.5 | 4 | 21 |
destination | 3 | 4 | 5 | 7 | 4 | 5 | 6 |
arrival time | 15 | 19 | 22 | 31 | 27 | 9.5 | 26 |
unloading start time | 15.5 | 20 | 22.5 | 31.5 | 27.5 | 10 | 26.5 |
operation period(unit: day/train) | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
available capacity(unit: TEU) | 20 | 30 | 15 | 30 | 40 | 35 | 20 |
Rail service No. | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
origin | 4 | 5 | 5 | 6 | 6 | 7 | 7 |
loading start time | 3 | 1 | 6 | 11 | 1 | 14 | 21 |
loading cutoff time | 6 | 2 | 8 | 14 | 3 | 17 | 22 |
departure time | 7 | 2.5 | 9 | 15 | 4 | 18 | 22.5 |
destination | 8 | 4 | 7 | 7 | 8 | 8 | 9 |
arrival time | 17 | 6 | 13 | 18.5 | 7 | 23 | 28 |
unloading start time | 18 | 7 | 13.5 | 19 | 7.5 | 24 | 28.5 |
operation period(unit: day/train) | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
available capacity(unit: TEU) | 40 | 35 | 45 | 25 | 20 | 30 | 20 |
Arc | Costs | Time | Arc | Costs | Time | ||||
---|---|---|---|---|---|---|---|---|---|
Rail | Road | Rail | Road | Rail | Road | Rail | Road | ||
(1, 3) | 1310 | 2700 | 4.5 | 5.5 | (4, 6) | - | 2340 | - | 5.5 |
(1, 4) | 1513 | 2880 | 6 | 6 | (4, 8) | 2080 | - | 11 | - |
(2, 3) | - | 3600 | - | 10 | (5, 4) | 1108 | - | 4.5 | - |
(2, 5) | 1371 | 2700 | 6 | 7.5 | (5, 6) | - | 3780 | - | 9 |
(2, 7) | 2323 | - | 7 | - | (5, 7) | 1310 | 2340 | 4.5 | 5.5 |
(3, 4) | 1047 | - | 2 | - | (6, 7) | 1209 | - | 4 | - |
(3, 5) | 1614 | - | 6 | - | (6, 8) | 1027 | 1680 | 3.5 | 4.5 |
(3, 6) | 1310 | 2400 | 5.5 | 6 | (6, 9) | - | 2940 | - | 8.5 |
(3, 7) | - | 3660 | - | 10 | (7, 8) | 1513 | 3060 | 6 | 8.5 |
(4, 5) | - | 1440 | - | 3.5 | (7, 9) | 1432 | 2820 | 6 | 8 |
No. | O | D | Pickup | Delivery | Release Time | Volume | Due Date |
---|---|---|---|---|---|---|---|
1 | 1 | 8 | √ | × | 8 | (16, 24, 33) | [35, 55, 68, 80] |
2 | 1 | 9 | √ | √ | 15 | (8, 17, 25) | [40, 50, 55, 61] |
3 | 1 | 9 | × | √ | 5 | (17, 26, 32) | [33, 40, 50, 70] |
4 | 2 | 8 | √ | √ | 0 | (22, 30, 38) | [45, 60, 75, 90] |
5 | 2 | 8 | × | √ | 13 | (14, 20, 27) | [50, 65, 77, 89] |
6 | 2 | 9 | √ | × | 19 | (13, 20, 28) | [60, 75, 80, 95] |
No. | Best Multimodal Routes |
---|---|
1 | (1)—Train 2—(4)—Train 8—(8) |
2 | (1)—Train 1—(3)—Road Service—(6*)—Road Service—(9) |
3 | (1)—Train 2—(4)—Road Service—(5)—Train 10—(7)—Road Service—(9) |
4 | (2)—Train 4—(7)—Train 13—(8) |
5 | (2)—Train 4—(7)—Road Service—(8) |
6 | (2)—Road Service—(5)—Train 10—(7)—Train 14—(9) |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Lang, M.; Wang, J. On Solving the Fuzzy Customer Information Problem in Multicommodity Multimodal Routing with Schedule-Based Services. Information 2016, 7, 13. https://doi.org/10.3390/info7010013
Sun Y, Lang M, Wang J. On Solving the Fuzzy Customer Information Problem in Multicommodity Multimodal Routing with Schedule-Based Services. Information. 2016; 7(1):13. https://doi.org/10.3390/info7010013
Chicago/Turabian StyleSun, Yan, Maoxiang Lang, and Jiaxi Wang. 2016. "On Solving the Fuzzy Customer Information Problem in Multicommodity Multimodal Routing with Schedule-Based Services" Information 7, no. 1: 13. https://doi.org/10.3390/info7010013
APA StyleSun, Y., Lang, M., & Wang, J. (2016). On Solving the Fuzzy Customer Information Problem in Multicommodity Multimodal Routing with Schedule-Based Services. Information, 7(1), 13. https://doi.org/10.3390/info7010013