Cable Capacitance Attack against the KLJN Secure Key Exchange
Abstract
:1. Introduction
2. The KLJN Secure Key Exchange System
2.1. The KLJN Protocol
2.2. Cable Capacitance Attack
3. Realization of the Attack
3.1. Generating the Noise
3.2. Comparing the Lumped and Distributed Element Models at Different Wavelengths
3.3. The Attack Protocol
3.4. Simulation Results of the Cable Capacitance Attack
Bit Exchange Duration | Bits Per Second | 100 m Cable | 1000 m Cable |
---|---|---|---|
20 | 50 | 50.9% | 62.2% |
50 | 20 | 52.1% | 69.7% |
100 | 10 | 52.6% | 76.9% |
4. Defense against the Attack
4.1. Capacitor Killer
4.2. Privacy Amplification
5. Conclusions
Author Contributions
Conflicts of Interest
References
- Cho, A. Simple Noise May Stymie Spies Without Quantum Weirdness. Science 2005, 309, 2148. [Google Scholar] [CrossRef] [PubMed]
- Kish, L.B. Totally secure classical communication utilizing Johnson(-like) noise and Kirchoff’s law. Phys. Lett. A 2006, 352, 178–182. [Google Scholar] [CrossRef]
- Kish, L.B. Protection against the man-in-the-middle-attack for the Kirchhoff-loop-Johnson(-like)-noise cipher and expansion by voltage-based security. Fluct. Noise Lett. 2006, 6, L57–L63. [Google Scholar] [CrossRef]
- Kish, L.B.; Granqvist, C.G. On the security of the Kirchhoff-law-Johnson-noise (KLJN) communicator. Quantum Inf. Process. 2014, 13, 2213–2219. [Google Scholar] [CrossRef]
- Bennett, C.H.; Brassard, G. Quantum cryptography: Public key distribution and coin tossing. In Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Banglore, India, 10–12 December 1984; pp. 175–179.
- Yuen, H.P. Essential lack of security proof in quantum key distribution. 2013; arXiv:1310.0842. [Google Scholar]
- Hirota, O. Incompleteness and Limit of Quantum Key Distribution Theory. 2012; arXiv:1208.2106. [Google Scholar]
- Renner, R. Reply to recent scepticism about the foundations of quantum cryptography. 2012; arXiv:1209.2423. [Google Scholar]
- Yuen, H.P. Unconditional Security In Quantum Key Distribution. 2012; arXiv:1205.5065. [Google Scholar]
- Yuen, H.P. On the Foundations of Quantum Key Distribution—Reply to Renner and Beyond. 2012; arXiv:1210.2804. [Google Scholar]
- Yuen, H.P. Security Significance of the Trace Distance Criterion in Quantum Key Distribution. 2011; arXiv:1109.2675. [Google Scholar]
- Yuen, H.P. Key Generation: Foundations and a New Quantum Approach. 2009; arXiv:906.5241. [Google Scholar]
- Merali, Z. Hackers blind quantum cryptographers. Nat. News 2009. [Google Scholar] [CrossRef]
- Gerhardt, I.; Liu, Q.; Lamas-Linares, A.; Skaar, J.; Kurtsiefer, C.; Makarov, V. Full-field implementation of a perfect eavesdropper on a quantum cryptography system. Nat. Commun. 2011, 2, 349. [Google Scholar] [CrossRef] [PubMed]
- Gerhardt, I.; Liu, Q.; Lamas-Linares, A.; Skaar, J.; Scarani, V.; Makarov, V.; Kurtsiefer, C. Experimentally Faking the Violation of Bell’s Inequalities. Phys. Rev. Lett. 2011, 107. [Google Scholar] [CrossRef]
- Lydersen, L.; Wiechers, C.; Wittmann, C.; Elser, D.; Skaar, J.; Makarov, V. Hacking commercial quantum cryptography systems by tailored bright illumination. Nat. Photonics 2010, 4, 686–689. [Google Scholar] [CrossRef]
- Lydersen, L.; Wiechers, C.; Wittmann, C.; Elser, D.; Skaar, J.; Makarov, V. Avoiding the blinding attack in QKD. Nat. Photonics 2010, 4. [Google Scholar] [CrossRef]
- Lydersen, L.; Wiechers, C.; Wittmann, C.; Elser, D.; Skaar, J.; Makarov, V. Thermal blinding of gated detectors in quantum cryptography. Opt. Express 2010, 18, 27938–27954. [Google Scholar] [CrossRef] [PubMed]
- Jain, N.; Wittmann, C.; Lydersen, L.; Wiechers, C.; Elser, D.; Marquardt, C.; Makarov, V.; Leuchs, G. Device Calibration Impacts Security of Quantum Key Distribution. Phys. Rev. Lett. 2011, 107. [Google Scholar] [CrossRef]
- Lydersen, L.; Jain, N.; Wittmann, C.; Marøy, Ø.; Skaar, J.; Marquardt, C.; Makarov, V.; Leuchs, G. Superlinear threshold detectors in quantum cryptography. Phys. Rev. A 2011, 84. [Google Scholar] [CrossRef]
- Lydersen, L.; Skaar, J.; Makarov, V. Tailored bright illumination attack on distributed-phase-reference protocols. J. Mod. Opt. 2011, 58, 680–685. [Google Scholar] [CrossRef]
- Wiechers, C.; Lydersen, L.; Wittmann, C.; Elser, D.; Skaar, J.; Marquardt, C.; Makarov, V.; Leuchs, G. After-gate attack on a quantum cryptosystem. New J. Phys. 2011, 13. [Google Scholar] [CrossRef]
- Lydersen, L.; Akhlaghi, M.K.; Hamed Majedi, A.; Skaar, J.; Makarov, V. Controlling a superconducting nanowire single-photon detector using tailored bright illumination. New J. Phys. 2011, 13. [Google Scholar] [CrossRef]
- Sauge, S.; Lydersen, L.; Anisimov, A.; Skaar, J.; Makarov, V. Controlling an actively-quenched single photon detector with bright light. Opt. Express 2011, 19. [Google Scholar] [CrossRef] [PubMed]
- Makarov, V. Controlling passively quenched single photon detectors by bright light. New J. Phys. 2009, 11. [Google Scholar] [CrossRef]
- Makarov, V.; Skaar, J. Faked states attack using detector efficiency mismatch on SARG04, phase-time, DPSK, and Ekert protocols. Quantum Inf. Comput. 2008, 8, 622–635. [Google Scholar]
- Lim, C.C.W.; Walenta, N.; Legré, M.; Gisin, N.; Zbinden, H. Random Variation of Detector Efficiency: A Countermeasure Against Detector Blinding Attacks for Quantum Key Distribution. IEEE J. Sel. Top. Quantum Electron. 2015, 21, 1–5. [Google Scholar]
- Xu, F.; Curty, M.; Qi, B.; Lo, H.K. Measurement-device-independent quantum cryptography. IEEE J. Sel. Top. Quantum Electron. 2015, 21, 1–11. [Google Scholar]
- Jain, N.; Stiller, B.; Khan, I.; Makarov, V.; Marquardt, C.; Leuchs, G. Risk analysis of Trojan-horse attacks on practical quantum key distribution systems. IEEE J. Sel. Top. Quantum Electron. 2015, 21, 1–10. [Google Scholar]
- Sajeed, S.; Chaiwongkhot, P.; Bourgoin, J.P.; Jennewein, T.; Lütkenhaus, N.; Makarov, V. Security loophole in free-space quantum key distribution due to spatial-mode detector-efficiency mismatch. Phys. Rev. A 2015, 91. [Google Scholar] [CrossRef]
- Bennett, C.H.; Jess Riedel, C. On the security of key distribution based on Johnson-Nyquist noise. 2013; arXiv:1303.7435. [Google Scholar]
- Hao, F. Kish’s key exchange scheme is insecure. IEEE Proc. Inf. Secur. 2006, 153, 141–142. [Google Scholar] [CrossRef]
- Scheuer, J.; Yariv, A. A classical key-distribution system based on Johnson (like) noise—How secure? Phys. Lett. A 2006, 359, 737–740. [Google Scholar] [CrossRef]
- Kish, L.B.; Abbott, D.; Granqvist, C.G. Critical analysis of the Bennett-Riedel attack on secure cryptographic key distributions via the Kirchhoff-Law-Johnson-noise scheme. PLoS ONE 2013, 8, e81810. [Google Scholar] [CrossRef] [PubMed]
- Kish, L.B. Response to Feng Hao’s paper “Kish’s key exchange scheme is insecure”. Fluct. Noise Lett. 2006, 6, C37–C41. [Google Scholar] [CrossRef]
- Kish, L.B. Response to Scheuer-Yariv: “A classical key-distribution system based on Johnson (like) noise—How secure?”. Phys. Lett. A 2006, 359, 741–744. [Google Scholar] [CrossRef]
- Kish, L.B.; Scheuer, J. Noise in the wire: The real impact of wire resistance for the Johnson(-like) noise based secure communicator. Phys. Lett. A 2010, 374, 2140–2142. [Google Scholar] [CrossRef]
- Kish, L.B.; Horvath, T. Notes on recent approaches concerning the Kirchhoff-law-Johnson-noise-based secure key exchange. Phys. Lett. A 2009, 373, 2858–2868. [Google Scholar] [CrossRef]
- Mingesz, R.; Gingl, Z.; Kish, L.B. Johnson(-like) Noise Kirchhoff-loop based secure classical communicator characteristics, for ranges of two to two thousand kilometers, via model-line. Phys. Lett. A 2008, 372, 978–984. [Google Scholar] [CrossRef]
- Mingesz, R.; Bela Kish, L.; Gingl, Z.; Granqvist, C.G.; Wen, H.; Peper, F.; Eubanks, T.; Schmera, G. Unconditional security by the laws of classical physics. Metrol. Meas. Syst. 2013, 20, 3–16. [Google Scholar] [CrossRef]
- Kish, L.B. Enhanced Secure Key Exchange Systems Based on the Johnson-Noise Scheme. Metrol. Meas. Syst. 2013, 20, 191–204. [Google Scholar] [CrossRef]
- Smulko, J. Performance Analysis of the “Intelligent” Kirchhoff-Law-Johnson-Noise Secure Key Exchange. Fluct. Noise Lett. 2014, 13. [Google Scholar] [CrossRef]
- Kish, L.B.; Mingesz, R. Totally secure classical networks with multipoint telecloning (teleporation) of classical bits through loops with Johnson-like noise. Fluct. Noise Lett. 2006, 6, C9–C21. [Google Scholar] [CrossRef]
- Horváth, T.; Kish, L.B.; Scheuer, J. Effective privacy amplification for secure classical communications. EPL (Europhys. Lett.) 2011, 94. [Google Scholar] [CrossRef]
- Kish, L.B.; Peper, F. Information Networks Secured by the Laws of Physics. IEICE Trans. Commun. 2012, 95, 1501–1507. [Google Scholar] [CrossRef]
- Gonzalez, E.; Kish, L.B.; Balog, R.S.; Enjeti, P. Information Theoretically Secure, Enhanced Johnson Noise Based Key Distribution over the Smart Grid with Switched Filters. PLoS ONE 2013, 8, e70206. [Google Scholar] [CrossRef] [PubMed]
- Kish, L.B.; Kwan, C. Physical unclonable function hardware keys utilizing Kirchhoff-law-Johnson-noise secure key exchange and noise-based logic. Fluct. Noise Lett. 2013, 12. [Google Scholar] [CrossRef]
- Kish, L.B.; Saidi, O. Unconditionally secure computers, algorithms and hardware, such as memories, processors, keyboards, flash and hard drives. Fluct. Noise Lett. 2008, 8, L95–L98. [Google Scholar] [CrossRef]
- Chen, H.P.; Kish, L.B.; Granqvist, C.G.; Schmera, G. Do electromagnetic waves exist in a short cable at low frequencies? What does physics say? Fluct. Noise Lett. 2014, 13. [Google Scholar] [CrossRef]
- Kish, L.; Chen, S.; Granqvist, C.; Smulko, J. Waves in a short cable at low frequencies, or just hand-waving? In Proceedings of the 2015 International Conference on Noise and Fluctuations (ICNF), Xi’an, China, 2–6 June 2015; pp. 1–5.
- Saez, Y.; Kish, L.B.; Mingesz, R.; Gingl, Z.; Granqvist, C.G. Bit errors in the Kirchhoff-Law-Johnson-Noise secure key exchange. Int. J. Mod. Phys. Conf. Ser. 2014, 33. [Google Scholar] [CrossRef]
- Saez, Y.; Kish, L.; Mingesz, R.; Gingl, Z.; Granqvist, C. Current and voltage based bit errors and their combined mitigation for the Kirchhoff-law-Johnson-noise secure key exchange. J. Comput. Electron. 2014, 13, 271–277. [Google Scholar] [CrossRef]
- Saez, Y.; Kish, L.B. Errors and their mitigation at the Kirchhoff-law-Johnson-noise secure key exchange. PLoS ONE 2013, 8, e81103. [Google Scholar] [CrossRef] [PubMed]
- Saez, Y.; Cao, X.; Kish, L.B.; Pesti, G. Securing vehicle communication systems by the kljn key exchange protocol. Fluct. Noise Lett. 2014, 13. [Google Scholar] [CrossRef]
- Gonzalez, E.; Balog, R.S.; Kish, L.B. Resource requirements and speed versus geometry of unconditionally secure physical key exchanges. Entropy 2015, 17, 2010–2024. [Google Scholar] [CrossRef]
- Vadai, G.; Mingesz, R.; Gingl, Z. Generalized Kirchhoff-Law-Johnson-Noise (KLJN) secure key exchange system using arbitrary resistors. Sci. Rep. 2015, 5. [Google Scholar] [CrossRef] [PubMed]
- Kish, L.B.; Gingl, Z.; Mingesz, R.; Vadai, G.; Smulko, J.; Granqvist, C.G. Analysis of an attenuator artifact in an experimental attack by Gunn-Allison-Abbott against the Kirchhoff-law-Johnson-noise (KLJN) secure key exchange system. Fluct. Noise Lett. 2015, 14. [Google Scholar] [CrossRef]
- Chen, H.P.; Laszlo, B.K.; Claes, G.G.; Claes, G.G. On the “Cracking” Scheme in the Paper “A Directional Coupler Attack Against the Kish Key Distribution System” by Gunn, Allison and Abbott. Metrol. Meas. Syst. 2014, 21, 389–400. [Google Scholar] [CrossRef]
- Kish, L.B.; Granqvist, C.G. Elimination of a Second-Law-attack, and all cable-resistance-based attacks, in the Kirchhoff-law-Johnson-noise (KLJN) secure key exchange system. Entropy 2014, 16, 5223–5231. [Google Scholar] [CrossRef]
- Kish, L.B.; Granqvist, C.G. Random-resistor-random-temperature Kirchhoff-law-Johnson-noise (RRRT-KLJN) key exchange. 2015; arXiv:1509.08150. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.-P.; Gonzalez, E.; Saez, Y.; Kish, L.B. Cable Capacitance Attack against the KLJN Secure Key Exchange. Information 2015, 6, 719-732. https://doi.org/10.3390/info6040719
Chen H-P, Gonzalez E, Saez Y, Kish LB. Cable Capacitance Attack against the KLJN Secure Key Exchange. Information. 2015; 6(4):719-732. https://doi.org/10.3390/info6040719
Chicago/Turabian StyleChen, Hsien-Pu, Elias Gonzalez, Yessica Saez, and Laszlo B. Kish. 2015. "Cable Capacitance Attack against the KLJN Secure Key Exchange" Information 6, no. 4: 719-732. https://doi.org/10.3390/info6040719
APA StyleChen, H. -P., Gonzalez, E., Saez, Y., & Kish, L. B. (2015). Cable Capacitance Attack against the KLJN Secure Key Exchange. Information, 6(4), 719-732. https://doi.org/10.3390/info6040719