3.1. Comparison of Different PSO Algorithms
In this section, we compare results of test functions found by EQPSO with six different PSO methods. Sphere Model, Generalized Rastrigin, Griewank, Ackley, Alpine, Schwefel’s Problem and Generalized Rosenbrock were used as the test functions. The detailed information of these seven functions is shown in
Table 1. Sphere Model is a nonlinear symmetric unimodal function, and its different dimensions are separable. Most algorithms can easily find the global optimum of Sphere Model, and it can be used for testing the optimization precision of EQPSO. Generalized Rastrigin, Griewank, Ackley, Alpine, Schwefel’s Problem and Generalized Rosenbrock are complex and have many local minimums, so they are employed to test the global searching ability of EQPSO in this paper.
Table 1.
Standard test functions.
Functions | Mathematical Expression | Global Minimum |
---|
Sphere Model | | |
Generalized Rastrigin | | |
Griewank | | |
Ackley | | |
Alpine | | |
Schwefel’s Problem | | |
Generalized Rosenbrock | | |
Besides EQPSO, PSO, SPSO, and SQPSO, the enhanced QPSO proposed in paper [
6,
7,
11] (for simplicity, these three methods are denoted as M1, M2 and M3) are also used to optimize the seven test functions.
PSO uses Equation (1) to update particles’ speed, while SPSO uses Equation (3). SQPSO employs Equation (5) to compute the local attractor, while EQPSO employs Equation (9). PSO, SPSO, SQPSO and EQPSO all initialize their particle swarm by random numbers uniformly distributed, and other sets of these four methods are as introduced in
Section 2. The set of M1, M2 and M3 was the same as [
6,
7,
11]. The dimension of the all seven test functions was 30, and each program was repeated 10 times. All programs were run on MATLAB R2009a which was installed at a computer with a Windows 7 operating system and 4 Intel (R) Core (TM) i5-3470 CPUs @ 3.2GHz. The minimum value and its mean value found by each optimization algorithm during the 10 running times were used to evaluate its performance. All results are shown in
Table 2,
Table 3,
Table 4,
Table 5,
Table 6,
Table 7 and
Table 8.
Table 2.
Optimized results of the Sphere Model function found by different PSO algorithms.
Particles | 20 | 40 | 80 |
---|
Iterations | 1000 | 2000 | 3000 | 1000 | 2000 | 3000 | 1000 | 2000 | 3000 |
---|
PSO | 1.6441 | 0.8441 | 0.4893 | 0.9618 | 0.2800 | 0.1398 | 0.2838 | 0.0988 | 0.0363 |
0.8564 | 0.4999 | 0.2937 | 0.5715 | 0.1682 | 0.0759 | 0.2083 | 0.0531 | 0.0184 |
SPSO | 0.7261 | 0.3672 | 0.2391 | 0.1312 | 0.0628 | 0.0220 | 0.0109 | 0.0014 | 3.9598×10−4 |
0.4624 | 0.1436 | 0.1009 | 0.0561 | 0.0258 | 0.0092 | 0.0039 | 6.3394×10−4 | 4.1215×10−5 |
SQPSO | 2.5633 | 1.0165 | 0.3628 | 1.3290 | 0.3267 | 0.0691 | 0.6697 | 0.0688 | 0.0066 |
1.7973 | 0.5651 | 0.1783 | 0.6007 | 0.1829 | 0.0308 | 0.4505 | 0.0271 | 0.0023 |
M1 | 1.2343×10−7 | 6.4803×10−9 | 4.5401×10−11 | 6.1377×10−8 | 1.6919×10−9 | 3.0023×10−11 | 1.3427×10−7 | 7.0411×10−9 | 2.1708×10−11 |
1.3762×10−8 | 1.7252×10−10 | 2.5644×10−12 | 5.9569×10−9 | 5.6898×10−11 | 5.1446×10−12 | 9.7467×10−9 | 1.5518×10−10 | 2.8007×10−12 |
M2 | 1.5605×10−7 | 2.5670×10−9 | 9.4584×10−11 | 4.9876×10−8 | 1.4890×10−9 | 5.5934×10−11 | 8.7657×10−8 | 1.4832×10−9 | 2.6456×10−11 |
2.7035×10−8 | 4.1998×10−10 | 4.0927×10−12 | 1.6057×10−8 | 8.3158×10−11 | 1.0805×10−11 | 2.8367×10−8 | 3.5118×10−10 | 2.9924×10−12 |
M3 | 1.1710×10−3 | 2.7697×10−4 | 9.6107×10−8 | 6.2409×10−4 | 1.7757×10−6 | 7.3520×10−8 | 9.9449×10−5 | 2.4029×10−5 | 2.2679×10−7 |
2.7035×10−5 | 6.1339×10−7 | 1.2988×10−8 | 3.0888×10−5 | 1.7354×10−7 | 1.1750×10−8 | 1.9037×10−5 | 2.5322×10−7 | 5.7069×10−9 |
EQPSO | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Table 3.
Optimized results of the Generalized Rastrigin function found by different PSO algorithms.
Particles | 20 | 40 | 80 |
---|
Iterations | 1000 | 2000 | 3000 | 1000 | 2000 | 3000 | 1000 | 2000 | 3000 |
---|
PSO | 12.6982 | 7.5865 | 5.5879 | 6.0211 | 5.5924 | 5.4869 | 7.9318 | 6.9536 | 6.7100 |
4.3357 | 3.7038 | 3.5364 | 2.2309 | 1.9919 | 1.9899 | 4.1269 | 3.0257 | 3.0257 |
SPSO | 8.0665 | 5.8705 | 4.9350 | 4.7761 | 4.3778 | 4.3315 | 6.8265 | 5.5614 | 5.3427 |
3.9084 | 3.2631 | 1.2684 | 1.9899 | 1.9899 | 1.9899 | 2.4574 | 2.3509 | 0.0199 |
SQPSO | 5.5515 | 4.0321 | 3.1779 | 4.3447 | 3.2834 | 3.2834 | 5.7808 | 5.0256 | 4.3040 |
3.5126 | 2.102 | 1.0388 | 0.9950 | 0.9950 | 0.9950 | 2.1503 | 1.9929 | 2.0035 |
M1 | 0.0609 | 2.7337×10−4 | 9.0049×10−5 | 5.4290×10−6 | 2.6125×10−5 | 5.4374×10−8 | 3.2645×10−5 | 1.4798×10−7 | 1.0201×10−7 |
2.0564×10−8 | 4.7390×10−11 | 8.0593×10−12 | 1.5582×10−8 | 2.9045×10−10 | 3.4266×10−12 | 2.8414×10−8 | 2.0407×10−10 | 2.7871×10−12 |
M2 | 0.1494 | 6.7643×10−4 | 8.1401×10−5 | 1.6174×10−4 | 4.4490×10−6 | 5.3705×10−8 | 4.8611×10−5 | 4.3624×10−7 | 1.6225×10−7 |
3.9666×10−7 | 1.4207×10−10 | 4.3480×10−11 | 5.2413×10−8 | 1.4959×10−9 | 5.5120×10−12 | 8.0935×10−8 | 1.4349×10−9 | 5.8833×10−12 |
M3 | 0.5327 | 8.0681×10−1 | 1.1260×10−1 | 3.8695×10−2 | 4.9710×10−2 | 7.2574×10−2 | 1.0967×10−2 | 2.0896×10−2 | 5.7961×10−2 |
8.9381×10−4 | 1.6325×10−6 | 9.2113×10−8 | 1.9217×10−4 | 8.5606×10−7 | 1.3543×10−8 | 8.8096×10−5 | 3.2663×10−7 | 7.5069×10−9 |
EQPSO | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Table 4.
Optimized results of the Griewank function found by different PSO algorithms.
Particles | 20 | 40 | 80 |
---|
Iterations | 1000 | 2000 | 3000 | 1000 | 2000 | 3000 | 1000 | 2000 | 3000 |
---|
PSO | 0.1002 | 0.0511 | 0.0332 | 0.0583 | 0.0237 | 0.0137 | 0.0249 | 0.0093 | 0.0042 |
0.0732 | 0.0272 | 0.0206 | 0.0400 | 0.0133 | 0.0112 | 0.0148 | 0.0061 | 0.0024 |
SPSO | 0.0458 | 0.0272 | 0.0158 | 0.0107 | 0.0038 | 0.0029 | 0.0016 | 3.4054×10−4 | 8.3607×10−5 |
0.0215 | 0.0128 | 0.0072 | 0.0054 | 0.0013 | 0.0012 | 4.4367×10−4 | 1.2080×10−4 | 3.1961×10−5 |
SQPSO | 0.1317 | 0.0433 | 0.0205 | 0.0667 | 0.0151 | 0.0052 | 0.0306 | 0.0062 | 8.7017×10−4 |
0.0850 | 0.0275 | 0.0081 | 0.0367 | 0.0087 | 0.0018 | 0.0188 | 0.0012 | 1.3873×10−4 |
M1 | 4.3802×10−9 | 1.3854×10−10 | 2.4538×10−12 | 3.9419×10−9 | 1.4175×10−9 | 4.8735×10−11 | 8.4938×10−8 | 2.7257×10−10 | 2.0276×10−12 |
8.1498×10−10 | 6.5957×10−12 | 9.5704×10−14 | 1.6868×10−10 | 1.1181×10−11 | 3.2141×10−13 | 5.2482×10−10 | 1.5978×10−11 | 3.4417×10−13 |
M2 | 6.8394×10−9 | 1.8461×10−10 | 1.2017×10−11 | 1.1083×10−8 | 2.2452×10−8 | 1.0303×10−11 | 1.1995×10−7 | 3.1639×10−10 | 6.6436×10−12 |
4.3524×10−10 | 1.4072×10−11 | 1.5965×10−13 | 4.8845×10−10 | 2.0792×10−11 | 4.9039×10−13 | 5.4717×10−10 | 1.7831×10−11 | 7.6550×10−13 |
M3 | 1.4325×10−7 | 2.1973×10−10 | 5.9936×10−11 | 1.9127×10−7 | 5.8875×10−10 | 7.6208×10−11 | 6.6305×10−8 | 6.9551×10−9 | 1.0071×10−10 |
1.1876×10−9 | 2.0809×10−11 | 9.8377×10−13 | 8.1657×10−10 | 6.5016×10−11 | 1.8130×10−13 | 2.7275×10−9 | 5.3252×10−11 | 3.2663×10−12 |
EQPSO | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Table 5.
Optimized results of the Ackley function found by different PSO algorithms.
Particles | 20 | 40 | 80 |
---|
Iterations | 1000 | 2000 | 3000 | 1000 | 2000 | 3000 | 1000 | 2000 | 3000 |
---|
PSO | 2.5623 | 2.6098 | 1.9049 | 2.0805 | 1.6090 | 1.3993 | 1.6511 | 0.9438 | 1.0636 |
2.1335 | 1.7159 | 1.5390 | 1.5095 | 1.0413 | 0.8074 | 0.9987 | 0.2065 | 0.3235 |
SPSO | 2.1057 | 1.9863 | 1.6675 | 1.6441 | 1.3633 | 1.3631 | 1.1669 | 1.4441 | 0.7958 |
1.4326 | 1.324 | 1.0799 | 0.7471 | 0.2686 | 0.6554 | 0.0826 | 0.0426 | 0.0212 |
SQPSO | 2.8525 | 2.0558 | 1.4556 | 2.3059 | 1.6019 | 0.4848 | 1.9968 | 0.4809 | 0.1158 |
2.2745 | 1.5366 | 0.9074 | 1.6426 | 0.5011 | 1.1067 | 1.1180 | 0.2082 | 0.0244 |
M1 | 2.0271×10−4 | 4.2164×10−5 | 5.8044×10−6 | 1.4847×10−4 | 3.5473×10−5 | 2.9210×10−6 | 1.4986×10−4 | 2.1964×10−5 | 1.0458×10−8 |
7.3464×10−5 | 1.0555×10−5 | 9.4110×10−7 | 7.7522×10−5 | 7.9518×10−6 | 1.5560×10−6 | 6.3927×10−5 | 8.4422×10−6 | 4.0880×10−9 |
M2 | 2.3179×10−4 | 3.8744×10−5 | 8.6453×10−6 | 1.8161×10−4 | 3.2453×10−5 | 4.3471×10−6 | 1.4951×10−4 | 2.8008×10−5 | 1.4904×10−8 |
9.3839×10−5 | 2.0169×10−5 | 1.0569×10−6 | 9.1389×10−5 | 1.3333×10−5 | 1.5869×10−6 | 7.6068×10−5 | 9.6436×10−6 | 4.8599×10−9 |
M3 | 1.8620×10−1 | 4.7290×10−2 | 4.3239×10−4 | 1.8255×10−1 | 3.1622×10−2 | 4.7492×10−3 | 1.6163×10−1 | 2.6017×10−2 | 5.5176×10−5 |
1.0703×10−1 | 2.0169×10−2 | 1.5221×10−4 | 1.0083×10−1 | 1.1978×10−2 | 1.1828×10−3 | 1.0100×10−1 | 9.3215×10−3 | 6.1040×10−5 |
EQPSO | 3.5527×10−15 | 3.5527×10−15 | 3.5527×10−15 | 3.5527×10−15 | 3.5527×10−15 | 3.5527×10−15 | 3.5527×10−15 | 3.5527×10−15 | 3.5527×10−15 |
3.5527×10−15 | 3.5527×10−15 | 3.5527×10−15 | 3.5527×10−15 | 3.5527×10−15 | 3.5527×10−15 | 3.5527×10−15 | 3.5527×10−15 | 3.5527×10−15 |
Table 6.
Optimized results of the Alpine function found by different PSO algorithms.
Particles | 20 | 40 | 80 |
---|
Iterations | 1000 | 2000 | 3000 | 1000 | 2000 | 3000 | 1000 | 2000 | 3000 |
---|
PSO | 0.0013 | 7.0809×10−4 | 6.7859×10−4 | 5.4561×10−4 | 2.1766×10−4 | 2.9181×10−4 | 2.9190×10−4 | 2.2766×10−4 | 1.1943×10−4 |
1.4526×10−4 | 3.6689×10−5 | 4.1992×10−5 | 1.7372×10−4 | 5.5540×10−5 | 3.8497×10−5 | 2.6377×10−5 | 5.1664×10−5 | 4.5208×10−5 |
SPSO | 0.0022 | 7.3980×10−4 | 8.9023×10−4 | 9.6133×10−4 | 5.4579×10−4 | 4.8548×10−4 | 5.6289×10−4 | 2.1799×10−4 | 1.7122×10−4 |
9.8492×10−5 | 5.4569×10−5 | 1.1949×10−5 | 5.3114×10−6 | 3.3547×10−5 | 7.9522×10−6 | 6.4584×10−5 | 1.0359×10−5 | 3.8545×10−6 |
SQPSO | 0.0143 | 0.0063 | 0.0061 | 0.0036 | 0.0031 | 0.0019 | 0.0031 | 0.0017 | 0.0010 |
1.6962×10−4 | 3.3031×10−5 | 2.3869×10−4 | 1.1016×10−4 | 6.2983×10−5 | 2.6630×10−4 | 1.4311×10−4 | 2.7915×10−5 | 2.5984×10−5 |
M1 | 1.8608×10−7 | 1.3972×10−8 | 2.6450×10−11 | 7.1641×10−8 | 6.6746×10−10 | 3.5401×10−8 | 7.7803×10−9 | 2.3994×10−10 | 1.0419×10−11 |
2.8334×10−11 | 2.2204×10−16 | 5.5511×10−17 | 2.3989×10−13 | 1.0230×10−14 | 1.7764×10−14 | 1.0359×10−12 | 1.990×10−14 | 4.4409×10−16 |
M2 | 1.2585×10−6 | 1.0236×10−7 | 4.5142×10−13 | 4.8673×10−5 | 3.8113×10−8 | 2.0704×10−7 | 2.1529×10−7 | 1.9118×10−7 | 3.2466×10−8 |
2.3168×10−10 | 1.1102×10−15 | 2.2206×10−16 | 3.0183×10−10 | 1.3156×10−13 | 3.8825×10−16 | 5.4900×10−10 | 6.2728×10−14 | 9.8810×10−15 |
M3 | 3.0681×10−2 | 8.3576×10−5 | 4.2667×10−9 | 7.5882×10−5 | 6.2528×10−6 | 4.3311×10−7 | 7.0333×10−3 | 1.7644×10−6 | 3.2466×10−7 |
1.2865×10−8 | 4.0240×10−10 | 1.1102×10−13 | 4.1666×10−6 | 6.0830×10−8 | 1.7875×10−11 | 6.7802×10−8 | 2.4242×10−10 | 6.0830×10−8 |
EQPSO | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Table 7.
Optimized results of the Schwefel’s Problem function found by different PSO algorithms.
Particles | 20 | 40 | 80 |
---|
Iterations | 1000 | 2000 | 3000 | 1000 | 2000 | 3000 | 1000 | 2000 | 3000 |
---|
PSO | 5.6638×10−4 | 1.5892×10−4 | 2.2988×10−5 | 4.0478×10−4 | 4.9989×10−6 | 4.3501×10−5 | 3.8480×10−5 | 2.0497×10−7 | 1.1667×10−6 |
6.8503×10−5 | 1.1801×10−5 | 2.5200×10−8 | 6.9970×10−6 | 7.8797×10−9 | 5.9474×10−7 | 5.7091×10−7 | 1.5086×10−8 | 1.8273×10−7 |
SPSO | 1.9251×10−5 | 2.0635×10−5 | 1.3080×10−5 | 1.5901×10−5 | 2.9800×10−6 | 3.8669×10−6 | 2.4663×10−6 | 2.1393×10−6 | 1.6282×10−6 |
1.4706×10−6 | 5.0909×10−6 | 2.1169×10−6 | 1.9596×10−6 | 1.2431×10−7 | 2.111×10−7 | 1.6972×10−8 | 2.7569×10−8 | 4.8958×10−9 |
SQPSO | 4.0874×10−4 | 2.1921×10−4 | 1.2638×10−4 | 2.0573×10−4 | 6.1381×10−5 | 4.1455×10−5 | 6.9722×10−5 | 6.2645×10−5 | 3.4666×10−5 |
4.7434×10−5 | 5.4540×10−6 | 2.5055×10−6 | 4.3894×10−5 | 6.4015×10−6 | 2.1093×10−6 | 1.2494×10−5 | 9.2323×10−6 | 2.8307×10−6 |
M1 | 5.6981×10−12 | 2.5339×10−18 | 9.3601×10−22 | 8.8922×10−14 | 3.0140×10−19 | 9.8431×10−21 | 9.1446×10−16 | 6.6840×10−20 | 7.3108×10−34 |
1.9443×10−15 | 4.4085×10−30 | 1.3082×10−43 | 1.0195×10−15 | 9.0262×10−33 | 1.5374×10−48 | 8.5965×10−18 | 1.3921×10−34 | 6.6827×10−45 |
M2 | 8.4145×10−11 | 2.6179×10−18 | 3.4991×10−20 | 2.0636×10−13 | 8.7243×10−19 | 5.1265×10−20 | 2.6896×10−15 | 1.4726×10−20 | 3.6702×10−20 |
9.4579×10−15 | 5.2842×10−29 | 3.4261×10−40 | 1.7643×10−15 | 1.2441×10−30 | 8.1405×10−47 | 3.9470×10−17 | 4.1385×10−32 | 1.1838×10−44 |
M3 | 9.9860×10−9 | 7.4953×10−16 | 3.5571×10−16 | 9.3567×10−10 | 2.6529×10−16 | 7.2096×10−17 | 3.0135×10−12 | 1.3079×10−15 | 3.9001×10−17 |
6.5071×10−11 | 9.0021×10−24 | 3.4261×10−37 | 4.2655×10−13 | 3.6111×10−27 | 7.2354×10−41 | 2.4677×10−13 | 7.5319×10−29 | 4.0303×10−41 |
EQPSO | 2.5546×10−19 | 3.2685×10−19 | 3.9020×10−20 | 5.3782×10−19 | 2.5603×10−20 | 1.2063×10−20 | 8.3867×10−34 | 4.3086×10−49 | 2.1549×10−51 |
3.5873×10−31 | 2.3113×10−56 | 4.5433×10−92 | 4.7913×10−19 | 2.4727×10−60 | 6.4142×10−90 | 2.1460×10−34 | 1.4186×10−63 | 2.1766×10−94 |
Table 8.
Optimized results of the Generalized Rosenbrock function found by different PSO algorithms.
Particles | 20 | 40 | 80 |
---|
Iterations | 1000 | 2000 | 3000 | 1000 | 2000 | 3000 | 1000 | 2000 | 3000 |
---|
PSO | 14.0820 | 6.9217 | 5.9551 | 6.0812 | 5.1278 | 4.2665 | 5.1579 | 5.0835 | 3.0416 |
7.7815 | 4.8018 | 1.7819 | 1.3719 | 3.5548 | 0.7336 | 3.3651 | 1.6381 | 0.0486 |
SPSO | 7.4839 | 7.3913 | 7.3204 | 7.4344 | 7.4063 | 7.3672 | 7.6472 | 7.3979 | 7.5233 |
7.1661 | 7.0657 | 6.9552 | 6.6722 | 7.1152 | 6.9455 | 6.7529 | 6.4032 | 6.4121 |
SQPSO | 4.1649 | 5.7284 | 4.5535 | 5.7841 | 7.8350 | 2.3123 | 3.1037 | 2.1716 | 1.7536 |
1.1123 | 0.9931 | 0.3690 | 0.5311 | 0.8699 | 0.0745 | 0.0491 | 0.1512 | 0.0467 |
M1 | 3.7539 | 3.5003 | 2.6244 | 2.1098 | 0.4345 | 0.0150 | 1.9711×10−5 | 7.3442×10−8 | 1.1838×10−8 |
0.1306 | 0.1975 | 0.3908 | 1.5283×10−4 | 4.0287×10−8 | 1.8431×10−12 | 7.9672×10−25 | 3.1923×10−27 | 3.1702×10−29 |
M2 | 3.9761 | 4.0357 | 3.4834 | 1.0713 | 0.5714 | 0.2179 | 9.3065×10−8 | 4.0549×10−10 | 1.5138×10−11 |
0.4548 | 0.5157 | 1.3480 | 0.0027 | 1.3731×10−7 | 2.1565×10−11 | 1.1516×10−24 | 2.3693×10−28 | 2.3247×10−29 |
M3 | 5.1747 | 4.1321 | 5.3282 | 1.3111 | 0.6469 | 0.0266 | 1.0219×10−7 | 9.7145×10−6 | 1.3633×10−11 |
0.3702 | 0.6407 | 0.5069 | 0.0089 | 3.6672×10−3 | 1.8315×10−7 | 2.4738×10−20 | 2.5591×10−25 | 1.9752×10−23 |
EQPSO | 3.6340 | 3.2169 | 2.9860 | 0.7790 | 0.1639 | 0.0150 | 1.9013×10−8 | 9.1212×10−31 | 0 |
0.0199 | 0.0088 | 0.5001 | 3.8339×10−5 | 2.1950×10−8 | 1.8431×10−12 | 7.1663×10−29 | 0 | 0 |
It can be found from
Table 2,
Table 3,
Table 4,
Table 5,
Table 6,
Table 7 and
Table 8 that the best results are acquired by EQPSO, which proves the global searching ability of EQPSO has been greatly improved with the help of the novel way of computing the local attractor. EQPSO can find the global minimum of Sphere Model, Generalized Rastrigin, Griewank, Alpine and Generalized Rosenbrock, and the result found by EQPSO is better than other six algorithms although they all do not find the global optimum of Ackley and Schwefel’s Problem. We can also find that the EQPSO of either 20 or 40 particles obtains the best result, which illustrates that the EQPSO can acquire a good result under the condition that the population is small.
The convergence speeds of different optimization algorithms are shown in
Figure 4,
Figure 5,
Figure 6 and
Figure 7 (the swarm size was 80 and the number of iterations was 3000) when used to optimize the Sphere Model, Generalized Rastrigin, Griewank and Ackley functions. It can be found that the convergence speed of EQPSO is faster than other considered PSO methods.
Figure 4.
Convergence speed of different PSO algorithms when used to optimize the Sphere Model function.
Figure 5.
Convergence speed of different PSO algorithms when used to optimize the Generalized Rastrigin function.
Figure 6.
Convergence speed of different PSO algorithms when used to optimize the Griewank function.
Figure 7.
Convergence speed of different PSO algorithms when used to optimize the Ackley function.
EQPSO and the other considered PSO methods were also used to optimize the problems with constraints, and three functions with constraints of paper [
26] (g07, g09 and g10, which are shown in
Table 9) are used as the test functions.
Table 9.
Test functions with constraints.
Functions | Mathematical Expression | Global Minimum |
---|
g07 | | |
g09 | | |
g10 | | |
The mechanism proposed in paper [
26] was adopted to help the considered PSO methods of this paper to solve the functions with constraints. This mechanism is used to select the leaders, and it is based both on the feasible solutions and on the fitness value of a particle. In this mechanism, when two feasible particles are compared, the particle which has the highest fitness value wins. If one particle is not feasible and the other one is feasible, then the feasible particle wins. If both particles are infeasible, the particle that has the lowest fitness value wins. The idea is to choose as a leader the particle that, even when infeasible, lies closer to the feasible region. More detailed information about this mechanism can be found in paper [
18]. When the seven considered methods were used to optimize these three functions, the size of their particle swarm was 80, and the maximum number of iterations was 3000. The results are shown in
Table 10.
Table 10.
Optimized results of g07, g09 and g10 found by different PSO algorithms.
| g07 | g09 | g10 |
---|
PSO | 26.8630 | 685.2511 | 7512.6585 |
25.4369 | 684.5264 | 7058.5644 |
SPSO | 26.3571 | 685.2355 | 7489.2385 |
25.3321 | 682.8701 | 7056.6452 |
SQPSO | 26.9852 | 685.7819 | 7498.3160 |
25.8752 | 684.2511 | 7053.8519 |
M1 | 25.0162 | 684.6238 | 7369.3470 |
24.6835 | 681.0064 | 7056.0559 |
M2 | 25.1302 | 685.6650 | 7396.5825 |
24.6973 | 681.4274 | 7057.8687 |
M3 | 25.5647 | 686.6652 | 7450.6183 |
25.1960 | 682.2697 | 7059.7984 |
EQPSO | 24.4080 | 681.5307 | 7145.6589 |
24.3090 | 680.6331 | 7051.0049 |
We can find from
Table 10 that the results found by EQPSO are better than other PSO methods for functions g07, g09 and g10.