Robust Sparse Representation for Incomplete and Noisy Data
Abstract
:1. Introduction
2. Sparse Representation for Classification
3. Incomplete Sparse Representation for Classification
3.1. Model of Incomplete Sparse Representation
3.2. Generic Formulation of ADMM
3.3. Algorithm for Incomplete Sparse Representation
Algorithm 1. Solving Problem (11) via ADMM. |
Input: the dictionary matrix constructed by all training samples, an incomplete test sample and the sampling index set . |
Output:, , and . |
Initialize: . |
While not converged do |
1: Update according to (14). |
2: Update according to (16). |
3: Update according to (19). |
4: Update according to (20). |
5: Update according to (22). |
6: Update according to (23). |
7: Update as . |
End while |
4. Convergence Analysis and Model Extension
5. Experiments
5.1. Datasets Description and Experimental Setting
5.2. Experimental Analysis
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Donoho, D. Compressed sensing. IEEE Trans. Inf. Theory 2006, 52, 1289–1306. [Google Scholar] [CrossRef]
- Candès, E.J.; Michael, W. An introduction to compressive sampling. IEEE Signal Process. Mag. 2008, 25, 21–30. [Google Scholar] [CrossRef]
- Wright, J.; Yang, A.Y.; Ganesh, A.; Sastry, S.S.; Ma, Y. Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 31, 210–227. [Google Scholar] [CrossRef] [PubMed]
- Qiao, L.; Chen, S.; Tan, X. Sparsity preserving discriminant analysis for single training image face recognition. Pattern Recogn. Lett. 2010, 31, 422–429. [Google Scholar] [CrossRef]
- Zhang, S.; Zhao, X.; Lei, B. Robust facial expression recognition via compressive sensing. Sensors 2012, 12, 3747–3761. [Google Scholar] [CrossRef] [PubMed]
- Wright, J.; Ma, Y.; Mairal, J.; Sapiro, G.; Huang, T.; Yan, S. Sparse representation for computer vision and pattern recognition. Proc. IEEE 2010, 98, 1031–1044. [Google Scholar] [CrossRef]
- Cheng, B.; Yang, J.; Yan, S.; Fu, Y.; Huang, T. Learning with L1-graph for image analysis. IEEE Trans. Image Process. 2010, 19, 858–866. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Liu, Z.; Jin, Z.; Yang, W. Kernel sparse representation based classification. Neurocomputing 2012, 77, 120–128. [Google Scholar] [CrossRef]
- Huang, K.; Aviyente, S. Sparse representation for signal classification. Neural Inf. Proc. Syst. 2006, 19, 609–616. [Google Scholar]
- Zhang, H.; Zha, Z.J.; Yang, Y.; Yan, S.; Chua, T.S. Robust (semi) nonnegative graph embedding. IEEE Trans. Image Process. 2014, 23, 2996–3012. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhang, S.; Zhao, X. Facial expression recognition via non-negative least-squares sparse coding. Information 2014, 5, 305–318. [Google Scholar] [CrossRef]
- Elhamifar, E.; Vidal, R. Sparse subspace clustering: Algorithm, theory, and applications. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 2765–2781. [Google Scholar] [CrossRef] [PubMed]
- Candès, E.J.; Recht, B. Exact matrix completion via convex optimization. Found. Comput. Math. 2009, 9, 717–772. [Google Scholar] [CrossRef]
- Shi, J.; Yang, W.; Yong, L.; Zheng, X. Low-rank representation for incomplete data. Math. Probl. Eng. 2014, 2014. [Google Scholar] [CrossRef]
- Boyd, S.; Parikh, N.; Chu, E.; Peleato, B.; Eckstein, J. Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 2011, 3, 1–122. [Google Scholar] [CrossRef]
- Candès, E.J.; Li, X.; Ma, Y.; Wright, J. Robust principal component analysis? J. ACM 2011, 58. [Google Scholar] [CrossRef]
- ORL Database of Faces. Available online: http://www.cl.cam.ac.uk/research/dtg/attarchive/ facedatabase.html (accessed on 23 June 2015).
- Yale Face Database. Available online: http://vision.ucsd.edu/content/yale-face-database (accessed on 23 June 2015).
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, J.; Zheng, X.; Yang, W. Robust Sparse Representation for Incomplete and Noisy Data. Information 2015, 6, 287-299. https://doi.org/10.3390/info6030287
Shi J, Zheng X, Yang W. Robust Sparse Representation for Incomplete and Noisy Data. Information. 2015; 6(3):287-299. https://doi.org/10.3390/info6030287
Chicago/Turabian StyleShi, Jiarong, Xiuyun Zheng, and Wei Yang. 2015. "Robust Sparse Representation for Incomplete and Noisy Data" Information 6, no. 3: 287-299. https://doi.org/10.3390/info6030287
APA StyleShi, J., Zheng, X., & Yang, W. (2015). Robust Sparse Representation for Incomplete and Noisy Data. Information, 6(3), 287-299. https://doi.org/10.3390/info6030287