1. Introduction
The
symbol grounding problem (SGP) was introduced by Harnad [
1] as a generalization and clarification of the semantic under-determination issues raised by Searle [
2] in his famous “Chinese room” argument. With reference to a “physical symbol system” model of cognition that posits purely syntactic operations (e.g., [
3,
4,
5,
6]), Harnad stated the SGP as follows:
How can the semantic interpretation of a formal symbol system be made intrinsic to the system, rather than just parasitic on the meanings in our heads? How can the meanings of the meaningless symbol tokens, manipulated solely on the basis of their (arbitrary) shapes, be grounded in anything but other meaningless symbols?
Here “the meanings in our heads” refers to the semantics assigned to a symbol system by the theorists who devised it; the SGP can thus be seen as the problem of freeing semantics from the need for a third-party interpreter, or as Harnad put it, making the semantics “intrinsic” to the symbol system. Taddeo and Floridi [
7] emphasized this aspect of the SGP by reformulating it as a requirement, the “zero semantical commitment condition,” that must be satisfied by any theory purporting to explain how the representations employed by any system, whether or not they satisfy the strict conditions on “symbols” and “symbol processing” specified in Harnad’s original formulation, obtain their semantics. The zero semantical commitment condition rules out any purported explanations of the semantics of a symbol system that either tacitly assume the semantics in question and hence are circular, or that tacitly base the semantics on some deeper assumed semantics and hence are regressive.
From a purely formal, model-theoretic perspective, the SGP might be rejected out of hand as not just unsolvable but ill-conceived. One might, in particular, argue from this perspective that essentially-arbitrary stipulation is the
only way any symbol or collection of symbols receives any semantics, and hence that the idea of an “intrinsic” semantics of any symbol or symbol system is incoherent. If this is the case, the SGP is clearly moot: any possible semantics is wholly dependent on some stipulating agent, and hence is either circular or regressive. From a cognitive science perspective, however, the SGP appears not just solvable but urgent. Human mental states, in particular, surely refer to something or other independently of 3rd-party stipulations. The “meanings in our heads” that Harnad worried about theories “parasitizing” are, after all,
our meanings; they must be grounded somehow. The SGP has, accordingly, been ranked as one of the major open problems in the philosophy of information [
8,
9], and has received considerable attention from researchers in both artificial intelligence and cognitive robotics (reviewed in [
7]) and embodied and situated cognition (reviewed in [
10,
11]). Recent approaches to the SGP have focussed on grounding semantics in motor actions, and transferring these grounded semantics to symbolic representations via machine-learning algorithms that optimize the action-symbol mapping based on feedback from the environment (e.g., [
12,
13,
14]). The extent to which such feedback from the environment embodies implicit semantic assumptions, for example in choices of training sets, and hence the extent to which such machine-learning approaches satisfy the zero semantical commitment condition remains open to question.
The present paper challenges all claimed solutions of the SGP by showing that under reasonable physical assumptions the SGP is equivalent to the
quantum system identification problem (QSIP), the problem of determining which quantum system a given experimental outcome characterizes. The quantum system identification problem is a generalization to quantum information theory of the system identification problem for finite-state machines formulated within classical automata theory [
15,
16], which itself is a formalized version of the well-known “blind men and the elephant” point that finite observations are insufficient to fully and precisely characterize an observed object. What quantum theory adds to the classical system identification problem is entanglement, and hence an in-principle inability to observationally track even stipulated boundaries separating collections of physical degrees of freedom, and hence even stipulated boundaries separating physical systems characterized by such degrees of freedom, through time. The “reasonable physical assumptions” under which the SGP and the QSIP are claimed to be equivalent are, briefly, that the non-symbols available as potential grounds of symbols are
physical entities, and that the physics that describes the dynamical behavior of these entities satisfies a fundamental symmetry, decompositional equivalence [
17,
18,
19], that is satisfied by minimal quantum theory,
i.e., by quantum theory with no
physical “collapse of the wave function.” As all available experimental evidence indicates that minimal quantum theory—together with its extension to the relativistic domain, quantum field theory—correctly describes the physical world (e.g., [
20]), the “reasonable physical assumptions” can be simplified to “symbols are grounded, if at all, by quantum systems” where a “quantum system” is a physical system correctly described by minimal quantum theory. It is worth emphasizing that the assumption that minimal quantum theory correctly describes physical systems is an
assumption that could, despite the evidence supporting it, eventually be shown to be wrong; the correct description of physical systems could turn out to be Bohmian mechanics [
21], a stochastic collapse theory (e.g., [
22]), or some other theory mathematically distinct from but currently experimentally indistinguishable from minimal quantum theory. What is proposed here is that the increasingly tight bounds being placed by experiments on any deviations from the mathematical structure of minimal quantum theory render it a
reasonable assumption. It has previously been shown that, under this assumption, the QSIP is unsolvable by finite observational means [
18,
19,
23]. Showing that the SGP and the QSIP are equivalent shows, therefore, that subject to this assumption the SGP is unsolvable by finite observational means.
That the QSIP and the SGP should be closely-related problems is, from a certain point of view, completely straightforward. Experimental outcomes must be represented symbolically to be recorded in a classical memory. Any such recording links a symbol representing the outcome value—e.g., “”—to a symbol representing the quantum system of interest, e.g., “” or “”. This linkage may be indirect—for example, an outcome value may be linked to a measurement operation that is itself linked to a specific system by being defined mathematically as an automorphism of the Hilbert space of that system—but the structure of the quantum formalism guarantees that such a link will exist. Determining which quantum system a given experimental outcome characterizes requires determining what the symbol representing the quantum system of interest refers to. The QSIP thus requires that a non-circular, non-regressive, operational semantics be provided for the formal expressions that refer to “systems” in quantum theory; it requires that the systems to which such symbols refer be identifiable in the laboratory. Solving the QSIP involves, therefore, solving at least a broad instance of the SGP, the instance in which the symbols of interest refer to systems under investigation in the laboratory. The SGP, in turn, requires at least an in-principle ability to explicitly identify whatever non-symbols serve as “grounds” for physical symbol systems; without an ability to identify the claimed grounds, the claim that they serve as grounds is effectively empty. If such non-symbols are physical entities correctly described by minimal quantum theory, identifying them requires solving the QSIP. The present paper makes this straightforward but informal relationship precise. In so doing, it shows that no semantics of symbols that refer to quantum systems, which if minimal quantum theory correctly describes the physical world includes all physical systems, can be “intrinsic” to the symbols employed.
2. Preliminaries
2.2. Systems, States and Observables
Regularities in the behavior of a physical system are regularities in the patterns of state transitions executed by the system; observing such regularities involves observing the states of the physical system over an extended period of time. Grounding a symbol on an observable physical regularity is, therefore, grounding it on observations of physical state transitions; any instance of a process word such as “move”, for example, is grounded on an observation—perhaps just a remembered observation—of something moving. One can, therefore, describe grounding without loss of generality in terms of a dyadic relation between a symbol and a subset of the states of a physical system. Hence the question of identifying the ground of a symbol becomes the question of identifying a collection of states of a physical system, something that can only be accomplished through observation.
Even in classical physics, observing the state of a physical system requires interacting with it; one must bounce photons off of a red block, for example, to observe either its position or its redness visually. The representation of observation by the action of a mathematical operator that is employed within quantum theory is, therefore, completely general; classical observation is distinguished from quantum observation by the mathematical structure of the state space on which such operators act, and by the claim that all such operators commute. The outcome of an observation is, in either the classical or the quantum case, a real (i.e., not complex) value, typically accompanied by a unit of measurement, for example, “2 m”, “37 ns” or “15 kg”. A critical feature of such outcomes, often overlooked, is that they must be recordable in a persistent memory, and to be in any way useful to either the observer or any 3rd party, actually recorded in a persistent memory. This requirement for persistent recording places a powerful and principled constraint on both the outcome values themselves and any associated units: both must be encodable as finite bit strings, and both must be actually encoded, by the observer, in a memory device that can be accessed at a later time. While this requirement for finite encoding of outcomes is so obvious as to appear trivial, it will prove below to have significant consequences for understanding symbol grounding.
Because observations can only yield information about the current state of a physical system, in the form of outcome values for the physical degrees of freedom—position, mass, electric charge, etc.—that are probed by a sequence of measurement operations, it is natural to represent the physical system itself by the abstract space comprising all of its physically-allowed states. The action of a measurement operator on a system may change its current state—for example, bouncing sufficient photons off of an object may change its temperature or even its position—but such an action does not change what states are allowed for the system by the laws of physics; measurement operators are, therefore, automorphisms on physical state spaces. In classical physics, each physical state comprises one real value for each of the system’s physical degrees of freedom; the assumed mutual commutativity of classical measurement operators assures that all such values can, at least in principle, be measured simultaneously. Quantum theory replaces this classical state space with a Hilbert space comprising all linear combinations, with complex numbers as coefficients, of the allowed values of the system’s physical degrees of freedom. Because not all quantum-theoretic measurement operators commute, it is not possible to obtain simultaneous outcome values for all of the physical degrees of freedom of a quantum system.
Here another fundamental assumption must be made explicit. Every meaningful observable is an operator defined on and hence specific to a particular physical state space, that is, the state space comprising the degrees of freedom of a particular physical system. It is convenient to write expressions such as “” to represent observables (here, the quantum position observable in momentum space) without specifying the system on which they act, and hence to assume implicitly that the operator acts on whatever state space is designated by the observer. Such expressions are, however, formally ill-defined, and this shorthand notation systematically hides the location of the information needed to specify the physical system being operated upon. Taken literally, a position operator without a system specification is like a student who reports a list of position values but is unable to characterize the objects in those positions, or even to say whether the same object was observed in each position. Observing the position of a particular system requires telling the student how to distinguish from other things; in quantum theory, it requires using the particular observable that acts on the particular Hilbert space of and on no others. Hence the question of indentifying the system - for quantum systems, an instance of the QSIP - can also be posed as the question of identifying the Hilbert space , the position operator that acts specifically on , or any other observable defined specifically on . Associating an outcome value with a quantum system requires knowing that was obtained as an outcome value by the application of an observable defined over , and not by the application of a different observable defined over some other Hilbert space and hence some other system. As with the requirement for finite encoding, this apparently trivial point that operators are defined on and hence specific to particular state spaces will prove to have significant consequences for symbol grounding.
2.3. Quantum and Classical
As noted earlier, all experimental evidence to date supports the correctness of
minimal quantum theory [
20]; indeed quantum entanglement is now routinely observed over mesoscopic and macroscopic spatial (e.g., [
24,
25,
26]) and temporal (e.g., [
27,
28,
29]) scales. This growing body of evidence renders the existence of a domain in which physical dynamics are
actually classical, as opposed to just approximately and apparently classical, increasingly unlikely. In particular, it renders the existence of any
physical process of quantum state collapse that generates irreversibly classical physical states increasingly unlikely. Thus while classical physics remains an obviously useful
description of physical dynamics for some systems at some scales, experimental evidence increasingly indicates that no physical systems are actually classical. Even superselection “rules” that appear to restrict quantum systems to particular values of some degrees of freedom, for example to charge sectors, can be considered consequences of a choice of quantum reference frame, and hence as not imposing
actual classicality [
30]. Classical physics is, in other words, strictly an approximation: all
physical systems are
quantum systems. Hence it is consistent, and in a strict sense only correct, to treat any physical system
as a quantum system and to formally represent its states by a Hilbert space
.
Again, as noted earlier, the idea that all physical systems are quantum systems is most straightforwardly interpreted from a realist perspective,
i.e., one that acknowledges that there are real physical systems that have real physical degrees of freedom, and that all such systems behave as described by quantum, as opposed to classical, physical theory. In particular, all ordinary macroscopic systems such as tables and chairs and laboratory apparatus are composed of more fundamental physical systems, the degrees of freedom of which are all correctly described by quantum, not classical, physical theory. Observers interact with collections of these real physical degrees of freedom, including the macroscopic collections that characterize macroscopic systems, via real physical interactions representable as Hermitian operators defined over Hilbert spaces. It is difficult to fully abandon such a realist stance and maintain contact with experimental practice. “Non-ontic” approaches to quantum theory typically reject the existence of quantum states; Fuchs, for example, insists that “QUANTUM STATES DO NOT EXIST” ([
31] (p. 4), emphasis in original) and regards quantum theory not as a literal description of the world but as a “users manual” for making probability judgments. Fuchs does not, however, deny the existence of either physical degrees of freedom or physical systems. Indeed while he regards physical systems as “autonomous agents” capable of surprising behavior, he requires that they have well-defined, finite Hilbert-space dimensions that effectively limit their autonomy. He also does not deny the physicality of measurement interactions; indeed he treats measurements as
causing the “experiences” of observers, which are limited in every case to the finite sets of outcomes allowed by the Born rule applied to finite-dimensional Hilbert spaces ([
31], Figure 1 and caption). Anti-realism can, clearly, be taken farther than Fuchs takes it. On one possible reading of Wheeler’s “it from bit” proposal [
32] or even of Floridi’s “informational structural realism” [
33], symbols constitute fundamental reality and so cannot be “grounded” in anything non-symbolic even in principle (however see [
34] for Floridi’s own objection to this reading). If this anti-realist reading is accepted, there are by definition no non-symbolic grounds for any symbol, so the SGP is clearly moot. In this case, moreover, quantum “systems” themselves comprise symbols and symbols only and “observation” becomes a mapping from symbols to other symbols. Here, the idea of doing an
experiment in which non-symbolic entities are manipulated is altogether lost; “observations” are simply manipulations of symbols and as such are indistinguishable from theoretical calculations.
3. Solving the QSIP Requires Solving the SGP
Quantum theory is a formal, mathematical theory of the dynamical behavior of the physical world. The original axioms laid down by von Neumann [
35] have, since the development of decoherence theory from the 1970s onward (e.g., [
36,
37,
38,
39,
40]), been largely supplanted by axiomitizations that build both real-valued observational outcomes and the Born rule into a single postulate regarding measurement. Such axiomitizations avoid all mention of “collapse” and therefore yield the minimal quantum theory assumed here. The recent textbook
Quantum Computation and Quantum Information [
41] provides a particularly clear formulation of axioms of this kind:
- (1)
The state of any isolated quantum system may be represented as a unit vector in a Hilbert space .
- (2)
The time evolution of is unitary, and may be represented by a propagator where is the Hamiltonian operator characterizing .
- (3)
Measurements of may be represented as actions by a positive operator-valued measure (POVM), a collection of positive semi-definite Hilbert-space automorphisms that sum to the Identity, on .
- (4)
The components of an isolated composite system may be represented by a tensor-product structure (TPS) of .
As shown in [
41], the POVM formalism called for by axiom (3) generalizes the traditional formalism of Hermitian observables and their associated von Neumann projections; in particular, any POVM component
can be written as
for some Hermitian operator
. There has been increasing interest over the past decade in providing alternative, typically information-theoretic axioms for minimal quantum theory (e.g., [
42,
43,
44,
45,
46] among others); such alternatives must, clearly, be provably equivalent to the standard axioms in their empirical predictions.
The QSIP arises as a practical problem whenever quantum theory is applied to make predictions about observable outcomes. For example, if a prediction has been made that the position degrees of freedom of electrons prepared in some particular way will have some particular statistical distribution of values—e.g., be distributed as a double-slit interference pattern—testing this prediction requires an ability to identify electrons that have been prepared in the particular way called for. Often this is a matter of identifying an apparatus that reliably prepares electrons in the called for way, and confirming that it is working correctly; in other cases, it is a matter of identifying an apparatus that detects electrons that have been prepared in the called for way, and confirming that it is working correctly. Altering the interpretation of the formalism does not obviate this requirement for identification. If the Heisenberg “picture” of quantum theory, in which the idea that quantum states evolve over time as in axiom (2) above is replaced by the idea that observables—Hermitian operators or POVM components—evolve over time, one is faced with the task of identifying, again as a practical matter in the laboratory, the required time-varying observable, typically by identifying a detector that physically implements that observable and confirming that it is working correctly. In every case, the apparatus or detector that must be identified is a physical and therefore quantum system, however well its appearance or workings may be described by classical physics. Also in every case, the apparatus or detector must be repeatably re-identifiable over time; otherwise the replication of experiments is impossible.
The QSIP can now be stated explicitly: given a specification of a Hilbert space , a specification of a POVM (i.e., a normalized collection of Hermitian operators) defined on , or a finite collection of observational outcomes obtained with such a POVM, by what finite operational means can an observer identify ? By what finite operational means, for example, can an experimenter determine whether some system in front them has all and only the physical degrees of freedom, and all and only the dynamically allowed values of those physical degrees of freedom, that are specified by ? By what finite operational means can an experimenter determine that an apparatus or a set of laboratory procedures implements all and only the operations specified by a given POVM? As with classical system identification problems, the QSIP can also be given a “reverse engineering” formulation: given a physical system, how can an observer determine its Hilbert space? Given an apparatus or a set of laboratory procedures, how can she determine the POVM that it implements?
Implicit in the statement of the QSIP is a requirement that multiple observers can use the same means of identifying , and that they can use these means at multiple times. To satisfy this requirement, any means of identifying quantum systems must be both memorable and communicable; it must, therefore, be expressible using a finite set of symbols, and hence a finite string of bits. The QSIP is, therefore, the problem of identifying a physical system given a finite string of bits, and can be considered, without loss of generality, to be the problem of identifying a physical system given a particular finitely-encoded symbol such as “” or even “that voltmeter”. An uninterpreted symbol, however, is useless for identifying a physical system; one can only employ “” to identify , for example, if one knows what “” means. Solving the QSIP, therefore, requires that the symbols employed to specify quantum systems, write down POVMs, and record observational outcome values have semantics, and requires moreover that the semantics of these symbols relates them not just to other symbols, but to collections of physical degrees of freedom accessible to laboratory manipulation. Solving the QSIP, in other words, requires having a grounded semantics for the symbols employed to specify physical systems and record observational outcomes, and so requires solving the SGP.
It may be objected at this point that the symbols employed to specify physical systems and record observational outcomes acquire their semantics not through some special solution of the SGP for the language of physics or the language of non-cognitive science in general, but rather through the semantics of ordinary, non-technical, natural language. All students of physics, for example, learn the language of physics after they have learned a non-technical natural language. This objection carries weight, however, only if symbol grounding is not problematic in such non-technical natural languages. This is not the case: the SGP was formulated as a problem precisely because symbol grounding is problematic in ordinary natural languages, and is studied by both cognitive scientists and robotics researchers in a natural-language context. Hence solving the QSIP requires solving the SGP even if the semantics of symbols employed to specify physical systems and record observational outcomes are entirely derived from the semantics of an ordinary natural language.
It may also be objected that the semantics of symbols such as “that voltmeter” can be understood entirely in demonstrative terms, and that this demonstrative understanding of semantics can be extended to cover all terms used to refer to physical systems and physical processes. Such an objection may be pursued by noting that embodied, embedded agents are also able to manipulate objects in the environment, and hence able to resolve potential ambiguities in the demonstration of an object by manipulation followed by further demonstration. Such a process of demonstration accompanied by manipulation in fact characterizes much of language learning by human infants (e.g., [
47]), as well as forming the basis of the robotic symbol-grounding approaches noted earlier. Extending this process to a principled, as opposed to a “for all practical purposes” solution of the QSIP, however, requires demonstrating that it yields all and only the required degrees of freedom in all cases, or at least in all cases outside of some circumscribed set of exceptions. The insufficiency of finite observations for classical system identification demonstrated by Ashby [
15], Moore [
16] and others suggests that no such demonstration is possible; that this suggestion is correct is shown in
Section 5 below.
4. Solving the SGP Requires Solving the QSIP
With the above considerations in mind, let us now examine the SGP. As noted earlier, solving the SGP requires relating symbols to non-symbols, such as sensory transducer outputs or executable representations of bodily motions, that obtain their semantics from observer-independent regularities in the behaviors of physical systems. Establishing such relations between symbols and non-symbols requires an ability to identify both the behavioral regularities and the physical systems in question by observational means. The physical systems to be identified, however, are all quantum systems; hence solving the SGP requires observationally identifying quantum systems. Solving the SGP requires, therefore, solving the QSIP.
If solving the SGP requires solving the QSIP, one would expect that systematic failures to solve the QSIP would cause, and therefore in practice correspond to, systematic failures to solve the SGP. In particular, one would expect systematic failures to solve the QSIP underlying the failures to solve the SGP due to circularity or regression that the zero semantical commitment condition is designed to prevent. Such failures to solve the QSIP are in fact commonplace and have a specific form: they are attempts to identify a quantum system that either assume classical properties of the system being identified and are therefore circular, or assume classical properties of some system in interaction with the system being identified and are therefore regressive. Indeed the cases characterized as “typical” above are failures to solve the QSIP due to circularity: classical properties such as size, shape and color are assumed in these cases to pick out a particular quantum system. Stated in terms of the SGP, in these cases “nonsymbolic” sensory transducer outputs are assumed to be causal consequences of particular objects in the world. Any such assumption violates the zero semantical commitment condition, as testing it requires precisely the semantic assumption in question.
Circular and regressive assumptions are built deeply into the quantum-theoretic formalism, and the ability to perform repeatable experiments arguably depends upon them. This is nowhere clearer than in decoherence theory, the main current approach to explaining the “emergence of classicality” within minimal quantum theory (for textbook-length reviews, see [
38,
40]). Decoherence calculations require both the specification of a TPS that divides the universe into a “system of interest”
and its “environment”
and the specification of an interaction Hamiltonian
. They also require a classical assumption: that the observer observes, and hence obtains classical information about,
only the system of interest. In particular, the observer does not obtain classical information about the state of the environment, a condition that is often represented formally by assuming that the environment can be represented as a classical statistical ensemble. This classical assumption is critical, as it is what allows tracing out the off-diagonal terms in the interaction Hamiltonian. Classicality thus “follows” from decoherence theory only because it is built in to decoherence calculations from the beginning.
This circularity at the heart of decoherence theory is amplified by attempts to provide decoherence with a physical interpretation that ties it more directly to laboratory practice. The first question that arises in any decoherence calculation is that of how to define the TPS that separates the degrees of freedom composing
from those composing
. The standard answer is that the observer
decides how to structure this TPS by deciding what degrees of freedom are “relevant” or “accessible” in some particular situation (e.g., [
48,
49]). Any such decision is clearly based on classical criteria, and so obviates any claim that decoherence explains classicality. Zurek recognized that such dependence on decisions made by observers rendered decoherence non-objective, noting that “it is far from clear how one can define systems given an overall Hilbert space “of everything” and the total Hamiltonian” ([
37] p. 1794) and that “a compelling explanation of what the systems are—how to define them given, say, the overall Hamiltonian in some suitably large Hilbert space—would undoubtedly be most useful” (p. 1818). The “environment as witness” formulation of decoherence theory [
50,
51] is an attempt to provide such an explanation by shifting the “decision” process from the observer to the environment; in this formulation, observers interact not with
itself but with an encoding of the state of
in the state of
. This scenario is clearly realistic as a description of laboratory practice: as Zurek [
39] and others point out, observers typically obtain information about objects by interacting with photons, phonons and other ambient fields. It does not, however, solve the problem of objectively defining a TPS. The reason is that quantum theory satisfies a fundamental symmetry, decompositional equivalence, that forbids physical dynamics from depending on the TPS chosen to describe it. Decompositional equivalence is the symmetry that allows the Hamiltonian of a closed system
to be written, if 3
rd and higher-order terms are neglected, as a sum
, where
describes the pairwise interaction between two physical degrees of freedom
i and
j of
, and that allows alternative TPSs
and
to describe the same universe [
18,
19]. Any assumption that particular systems, and hence particular TPSs, are “preferred” by physical dynamics violates decompositional equivalence. It cannot, therefore, be assumed that the “environment” only encodes information about the states of particular systems; if the environment is assumed to encode information about the states of systems embedded in it, it must be assumed to encode information about the states of
all such systems. In this case, however, observers must be regarded as choosing which encoded information to extract from the environment, which is precisely the assumption of relevance that the environment as witness formulation was designed to avoid [
52].
The above analysis suggests that decompositional equivalence explains why circularity and regression are such common points of failure for proposed solutions of the SGP: such solutions presume a mapping from symbols to non-symbols that cannot, in any universe satisfying decompositional equivalence, be well-defined. Faced with this intrinsic ambiguity in the physical world, semantics has no choice but to fall back on stipulation. Any such stipulation assumes the use of a language with well-defined semantics, and hence succumbs to regression and, eventually, to circularity.
5. The Unsolvability of the QSIP Renders the SGP Unsolvable
Let be a TPS defined on a closed system , be a POVM defined on and be a finite set of real, finitely-encoded outcome values. The QSIP can then be stated as the question of whether can be identified as the source of the values contained in , and in particular, whether all alternative sources defined on alternative TPSs can be conclusively ruled out. That satisfies decompositional equivalence is assumed by writing the TPSs as equalities .
Consistent with the physical picture assumed by the environment as witness formulation of decoherence theory, consider an observer embedded in , or alternatively in , in such a way that the observer’s local interactions with the environment have no effect on the - interaction (alternatively, on ) and hence no effect on the action of the POVM (alternatively, on the action of ). The observer is free to collect a finite number of additional outcome values following a finite number of non-destructive experimental manipulations of (alternatively, of ); such values will be considered to be incorporated into the set .
Under these circumstances, the sequence of outcome values
obtained by the observer can be considered to be a sequence of discrete states of a classical finite-state machine (FSM). Theorem 2 of Moore ([
16] (p. 140)) then applies, showing that no finite sequence of observations of the states of any classical FSM is sufficient to identify the FSM. Hence no finite sequence of outcome values
obtained by the action of a POVM is sufficient to identify the POVM. An inability to identify the POVM being employed to make observations implies, however, an inability to identify the Hilbert space on which the POVM being employed is defined, and hence an inability to identify the physical system being examined. The QSIP is, therefore, unsolvable by finite observational means [
23].
When considered in this way, as the task of inferring a unique system identification from a finite number of discrete observations, the insolubility of the QSIP becomes obvious. Treating the
observation as an observation of the same system that produced the
observation, for example, already involves an assumption that the system has maintained its identity as
, with no changes in physical composition and hence in component degrees of freedom, between the two observations. The
a priori nature of this assumption and the difficulty of maintaining it in the face of a dynamic and uncontrollable physical world have been known since Heraclitus (ca 500 BCE). Consideration of the processes by which human beings re-identify perceived objects as the same individuals across gaps in observation only reinforces the
a priori nature of assumptions of object identity over time (e.g., [
53]).
The unsolvability of the QSIP does not, of course, imply that observations are insufficient to distinguish physical systems across the board. It rather implies the existence of a symmetry, called “observable-dependent exchange symmetry” in [
23], under which physical systems indistinguishable by finite actions of some set of Hermitian operators that share eigenvalues form an equivalence class. Choice of a different observable may permit the observational differentiation of systems within a previously-characterized equivalence class, by no finite combination of observables is sufficient to demonstrate that any such equivalence class has only a single member,
i.e., to uniquely identify a quantum system.
The unsolvability of the QSIP by finite means renders the SGP unsolvable by finite means; indeed, it shows that the SGP can only be solved to within an equivalence class under observable-dependent exchange symmetry. What does it mean, then, to say that one can establish the referent of ‘that voltmeter’ by pointing to a voltmeter? If the reasoning above is accepted, it can only mean that speaker and hearer agree that what appears to be a bounded enduring object of reference may be assumed, in context, to be a bounded enduring object of reference. This is a semantic assumption that directly violates the zero semantical commitment condition. It is good enough for all practical purposes, including all practical scientific purposes, but it does not solve the SGP.