1. Introduction: An Exciting New Epoch for Information Science
Looking 20 years backwards, just the time when the FIS initiative (Foundations of Information Science) begun, how different the panorama for information studies was. In 1992, Michael Conrad and the senior author of this paper undertook the adventure of convoking a number of researchers and scholars from many different disciplines and countries who exchanged views on the viability of the foundational project and soon gathered in an international FIS conference, in Madrid 1994 [
1,
2]. It was the first of the FIS series, to be followed by Vienna 1996, Paris 2005, Beijing 2010 and Moscow 2013. A discussion list, created after the Vienna conference, has been quite active all these years [
3].
What was the status of information science at that time, 20 years ago? Arguably, it was not very relevant. In the early 60s, as a result of the two conferences held at the Georgia Institute of Technology, an information science of sorts was launched, with the particular mandate of searching for unified human-human and human-machine communication; but the resultant attempt was scarcely influential. In a decade or so, most of its multidisciplinary luster was lost in favor of the nascent computer science and artificial intelligence communities [
1,
2]. Actually, in the late 80s and early 90s, a number of multidisciplinary adventures were launched around computer science (parallel processing), artificial intelligence, artificial life, theoretical biology, biocomputing, bioenergetics, chaos theory, complexity theories, theoretical physics,
etc.Many of these enterprises are still alive and well, but the general background has sensibly changed in favor of the information studies. Developments closely related to the informational approach are increasingly present in the scientific avant-garde of today: quantum information science, bioinformatics, systems biology, synthetic biology, neural connectome, brain atlas projects, network science, information society, plus the World Wide Web’s explosion and all those curious terms related to new ways of communication and social cognition—blogs, Wikipedia, LinkedIn, Facebook, YouTube, Twitter, Whatsapp, Instagram, crowdfunding, “the cloud”.
In our time, the enterprise of a renewed information science looks easier and closer, and even more necessary, as witnessed by the increasing number of journals, books, monographs, scholarly publications, research conferences, and so on that are devoted to information. Notwithstanding this more favorable scientific and cultural climate, information science is still a field in disarray. The traditional approach has not rallied and joined forces with the new foundational attempt yet, and as B. Hjørland discusses [
4], it is curious that parallel series of conferences are taking place respectively convoked by FIS and CoLIS (Conceptions on Library and Information Science) without any overlap in the participant authors. In the communication engineering field, the ITHEA organization (Information Theory and Applications) has also held regular conference series in the quest for a General Information Theory. Within computer sciences themselves different specialized branches and research institutions are also involved in “information science” development and in the potential unification under the umbrella of computing [
5]. In short, most of the conceptual and institutional obstacles already found in the early 90s still persist: flimsy disciplinary conceptual structures, scarce scholarly recognition, disinterest by neighboring disciplines, “occupied” territories, definition obsession (the cottage industry devoted to
what is information!), excessive bias towards philosophical discussions, lack of research projects,
etc.At stake is whether a departure towards more empirical and applied research themes would overcome those obstacles directly—and would gradually achieve recognition by staying closer to important social and scientific problems where the informational point of view may perform a useful problem-solving work. There are plenty of research fields where information science can interact with other major disciplines: from molecular recognition and cellular signaling systems to biosystems and integrative physiology; from the neurodynamics of behavior to emotions and consciousness correlates; from social media to individual bonds and complex social organizations; from a better explanation of the combinatory dynamics of knowledge to quantum and cosmological interpretations. Some of these themes will be briefly discussed in this paper.
An important factor that impels the development of a renewed—and critically oriented—information science is precisely the stunning transformative success of Information and Communication Technologies (ICTs). Their accelerated expansion during last two decades has produced speedy changes in the way individuals communicate, learn, store their knowledge, externalize their memories, travel, socialize, organize their work, and dispose their homes. It is quite curious a social phenomenon: the enormous intensification of “artificial” information flows in most aspects of individual and collective life has forced a myriad of relational and cultural
adaptive changes. A paradoxical outcome is the increase of social atomization—the extent to which a stressful sense of impoverished socialization, of loneliness and depression, and even of diminished mental health is accompanying the “information society” advancement. Although many other social, cultural, and economic factors could be involved, that atomization effect seems to be conspicuously related to the pervasive presence of ICTs. Looking more carefully, the discussion on this conjecture should also depend on a deeper understanding of the
informational characteristics of human individuals, the limitations they confront when managing the different information flows around them. Clarifying those informational/communicational limitations is one of the essential contributions that a renewed information science should provide. We will approach some of these matters in
Section 2 and in
Section 4.
Changing the ways citizens communicate, and modifying the nature and intensity of the information flows around them, impinges on numerous aspects of social life. In actuality, the most revolutionary inventions in history have been those related to the channeling of social information: tablets, scrolls, and alphabet (Ancient science and Greek science); codices, copyists’ schools, universities (Medieval Awakening); printing press, bookshops, and libraries (scientific revolution); new energy and production technologies, communication and education systems (industrial revolution); engineering, electronics, new materials, and giant corporations (scientific-technological 2nd revolution); media, computers, and internet (information revolution). See the corresponding references in [
6,
7,
8,
9,
10,
11]. However, we are barely at the beginning of the social history of information, and not too far from the pioneering ideas of W.J. Ong and H.M. McLuhan.
The increase of social connectivity underlies another distinctive characteristic of contemporary societies: the global expressions of social discontent. The possibilities of direct, massive communication among throngs of citizens have fostered unheard forms of “revolt of the masses”¾echoing J. Ortega y Gasset [
12]: they are bottom up self-organized but with immediate contagion at the national and international scales. In the same way than a global interconnection of national economies, of financial systems, and of health risks have dramatically expanded and amplified the scope of world crises, the systems of political representation are nowadays challenged by delegitimation crises and sudden storms of discontent. Authoritarian regimes as well as classical, well-consolidated democratic systems are suffering other unanticipated consequences of ICTs’ brute connectivity: either in new forms of “direct action” by isolated-networked individuals and self-organized groups, or in new instances of hidden global controls. It may look ironic, but the hyper-connected world shows diminished resilience to internal and external threats [
13]. In parallel with the paradoxical effects of hyper-connection in the impoverished socialization of the individual, it is the spectrum of a “new world disorder” that we see on the rise, rather than the perspective of an emerging
ecumene.
However, discussing the possible deleterious effects or unintended consequences of the ongoing information revolution is not the main goal of this paper. Rather, our basic proposal is the development of a new conception on information, biologically inspired, so that a new understanding might be gained on some unapproachable social themes of informational nature, such as the mentioned conjecture that the excess of “artificial” information flows could be interfering with the “natural” information flows and the bonding structures of social life. As we will propose herein, a new understanding of the “natural information flows” as they prototypically occur in living beings—even in the simplest cells—could provide a sound basis for discussing the most general problems of the new science.
There is an essential point about the biological intertwining between communication flows, almost immaterial, and stuff flows related to self-production processes. Around the distinction and conjunction between communication and self-production flows revolve some of the most important and general characteristics of informational entities: cells, organisms, brains, societies. It is an approach that can be easily conduced to a variety of empirical, comparative studies and applied research themes. By translating the idea of the information flows to the complex societies of today, a very different panorama may be obtained about the informational limitations of the individual, the complexity growth of social organizations, and the social use of knowledge. We will deal with these matters in the sections that follow. In order to initiate properly the discussion we must first draft the new conceptions proposed about information.
2. Some New Conceptions on Information
Every social crisis is also a knowledge crisis—the fact is that none of the existing disciplines provides a coherent understanding of the information flows in a complex organization or society. As already argued, it may well be the case that with the acceleration of artificial information flows around individuals, a progressive interference occurs with regard to the natural information flows and the bonding structures of social life, causing unknown new “forces” to stress and fracture basic social organizations. No matter the terms used to approach these phenomena, only a vague scientific understanding may be gained for the time being.
Information Science should be the fundamental theoretical-empirical discipline studying the way informational entities “exist” and how they organize their permanence amidst endless flows and exchanges with the environment. The narrow conceptions behind most approaches to information are predisposed to neglect that informational entities do not only communicate, they must self-construct as well. Information and complexity studies have traditionally fallen into a dichotomy: emphasis in formal communicative aspects along the Shannonian or semiotic cultures (sources, channels, messages, codes, signals, meaning, etc.), versus emphasis in physical and engineering aspects of self-organization, dissipative systems, energy-matter-entropy flows, transportation, control, self-production. However, all bio-social entities around us are endlessly caught in both communicational and productive flows, always interrelated.
Let us underscore that important fact: all biological systems, and all societies, are organized by putting together networks of communication and networks of self-production processes, always mixing them, interconnecting them. If living beings scan their environment and communicate with each other, it is in order to fulfill their needs and advance their life cycles. “Reading” the environment becomes prior to “eating” it (i.e., whatever is ingested from the outside has been previously detected and inspected by the sensory systems), and it is obvious that the respective energetic and communicational inputs are treated quite differently. Herein, we will explain in detail how both kinds of openness are organized—intertwined—in some of the simplest living organisms: prokaryotic cells. Further, we will argue that the meticulous integration of both kinds of processes is precisely the only way to arrange a complex organization, either molecular, or cellular-organismic, or social. Communicative flows have to infiltrate the material flows of self-production processes and guide them, and also the vice versa.
Whether the concept of
flow should accompany information, either referred to the communication processes, almost immaterial, or to the material stuff of self-production processes, becomes another aspect of the debate [
14]. The time scale considered represents an essential factor. Regarding communication, the classical Shannonian notion was factually embracing the flow idea, along the
source and
channel metaphoric terms; discrete messages are belonging to a continuum of communication, and there is no obstacle to consider them into a communication flow in a larger time scale, which may be compartmented into discrete elements and sequences at shorter scales. On the self-production side, the informational entity becomes an open system, out from equilibrium, with necessary energy-entropy-matter flows. The self-production process is based in those flows of stuff—ions, nutrients, affordances of the ecological niches, goods and services,
etc.—which must be looked for, and anticipated, usually following optimized search strategies [
14,
15]. They are easily detected and controlled by anticipatory information from the faster and cheaper communication flows. Orchestrating the mutual congruence between these two realms is critical for the viability of informational entities.
There appears a frequent commonality of forms between communication flows and material flows—manifested in the structures that support them. Often both kinds of systems are displaying fractal forms, derived from the necessity to cover a region of space and to transport the affordances of both the material and the communicational to a center [
14]. Given their interpenetration, communication and self-production flows appear as spatially catching each other. In general, it is the “infostructure” that dominates the “infrastructure”: fast and cheap information provides guidance and control over slower and more expensive matter. In philosophical terms, it is like the difference between mind and matter, brain and body, software and hardware, controller and controlled,
etc. Whatever the point of view, the whole theme is fiendishly complex; adequately cohering and integrating the communication and self-production dimensions is still in its infancy. An important line of thought that connects with some of the ideas herein discussed may be found in T.W. Deacon’s work “Incomplete Nature” [
16]; also in A. Bejan’s engineering work on flow systems [
14]; this approach might be connected with M. Burgin’s theoretical unification too [
17].
Very briefly, we have to deal with the conception of information itself. The famous
what is information question has been debated endless times, and hundreds of information definitions have been produced just in the last decades, most of them anthropocentric [
18]. See for instance the proceedings of the successive FIS and CoLIS conferences, or the recent compilation in the special issue of
Information [
19]. Herein, we are restricting ourselves to the quest of a bio-inspired notion of information that could also be extended partially to human and social realms. A non-trivial problem for anthropocentric approaches to information is that whatever kind of phenomena the human observer is attuned to, or is expecting to receive, it might be considered as a legitimate form of information and then susceptible to being generalized and defined conceptually. Actually, every discipline becomes an artificial ordering imposed on information and knowledge, following rigorous formal and experimental procedures, and can legitimately establish or define its own version of what is information.
Scientifically, there cannot be a universal definition of information for the same reason that nowadays there are hundreds of
different scientific disciplines [
20,
21,
22]. Every separate realm of knowledge has legitimately distinguished a separate form of information. Only ideal observers could link all of them—never the real observers. However, consensual notions might be established with more or less success, width of application, and rigor in order to cover and interconnect different fields or domains of experience.
Although a good working notion might be crafted, universality is precluded. There will always be some other fields in which even the best established notion will not work appropriately; all the more when explicit conditions on what should count as subject, object, and coupling mode in the information phenomena have to enter into the game too—and may be changed on the spot along highly volatile communicative interactions.
That a phenomenon does not yield to rigorous conceptual definition does not mean its scientific lack of value or that it cannot be appropriately quantified. That is precisely what happens with two of the most fundamental categories of physics: space and time. We could paraphrase St. Augustine’s famous question about time: What then is information? If no one asks of me, I know; if I wish to explain to him who asks, I know not.
Thereafter, if we advocate undefinability, it does not mean the ineffability of the term; rather what it means from a naturalistic perspective is that the plurality of subjects (can’t we talk about information in cells, in organisms, in individuals, or in social bodies as legitimate subjects?), plus the vastness of possible coupled objects, and the multiplicity of “coupling” modes between subjects and objects do not permit any universalistic definition. It does not follow that a consensus notion could not be established. The achievement of a “winning” notion getting the highest marks in most fields is quite possible and highly recommended (actually we are going to propose an interesting candidate right in the next paragraph): implicitly, that is what most of the proponents of information definitions have in mind.
The tentative notion of information as “
distinction on the adjacent” has been advocated by the present authors [
2,
23]. The
distinction term refers to the capabilities of the subject or informational entity engaged in the communication process: what “receiving the information” means in some restricted communication logics. It is about how the informational entity may create preliminary streams of relationships associated to the impinging signaling flows. A scheme of distinctional logic based on multidimensional partitions was discussed somewhere else [
24].
The adjacent term refers to the physical contact to be achieved, and the need of counting with sensory elements or with excitatory surfaces to be impinged upon by the incoming communication signals. Increasing the adjacency, extending the territory covered by the communication processes is a formidable drive of biological evolution: cellular pili, flagella, cilia, arborizations of axons and dendrites, the neuronal multiplicity of sensors and receptors, specialized maps, sensing modalities, etc. Not to speak about the cultural artifacts, means of communication, and scientific-technological apparatuses that transcend the immediate adjacency of subjects in the complex information flows of contemporary societies. By transcending the limits of immediate space-time adjacency (and memory), subjects may perform a myriad of further distinctions and cognitive operations.
Actually, it is a triad of entangled concepts—information, knowledge, intelligence—upon which the nucleus of a future information science has to be properly assembled. This view is in agreement with the basic outline presented by Y.X. Zhong [
25]; but there is some disagreement in the sense that nowadays these concepts cannot be elucidated from any single discipline, either philosophical, or computational, or scientific. As already said, they form part of the very nucleus of information science itself, and the procedures to abstract them should essentially include
the comparative study among canonical informational entities: cells, nervous systems, social organizations. This “comparative” point of view, although absent in the mainstream literature, has already been initiated by the authors in some previous papers [
20,
26].
Continuing with that comparative approach, the main novelty of this paper is that we connect the idea of flow with both metabolic and signaling exchanges of the living cell, finding and highlighting the essential processing difference between them. Thus, in the following section (the third), we will approach with some detail the way the living cell organizes its “real” self-production processes, and how it communicates with the external. Although the former processes are relatively well known (either as metabolism or as gene expression), the latter, performed by the specialized “cellular signalling system”, are widely disregarded and even ignored by molecular-biological researchers themselves.
We think that the utterly different way in which both kinds of input-flows are treated within living cells has a universal informational significance. Thereby, we will discuss how the organization of processes by the cellular system in the interconnection between communication and self-production provides a new bio-inspired notion on the triad information-meaning-knowledge. Subsequently, in
Section 4, we will make a bold leap: comparing the cellular handling of knowledge, through protein (DNA) domain recombination, with the way modern societies handle the multi-disciplinary processes of knowledge recombination. A new term, scientomics, will be proposed.
4. The Social Recombination of Knowledge
Approaching science itself as a composite informational construction and particularly as
knowledge recombination looks feasible [
36]. We can quote from W.B. Arthur [
37], in his recent approach to the nature of technological change, which is so close to the dynamics of change in science itself: “
Technologies therefore share common ancestries and combine, morph, and combine again to create further technologies. Technology evolves much as a coral reef builds itself from activities of small organisms—it creates itself from itself; all technologies are descended from earlier technologies...”
The natural division of work within scientific communities seems to reflect the presence of knowledge recombination processes: the need of specialized disciplines and the reliance on paradigms, the fracture and emergence of new fields, the systematic increase in the number of disciplines during recent centuries, the clusters and citation networking structures within scientific publications, etc.
Disciplines, rather than being isolated fields, are continuously mixing and rearranging their contents, recombining them, for the sake of the problems they have to solve, and factually giving birth to successive generations of inter-disciplines (e.g., information-physics, physical chemistry, biophysics, biochemistry, bioenergetics, bioengineering, socio-physics, sociobiology, psycho-sociology, neuro-psychiatry, socio-information, etc.).
See in
Figure 3 how research in a very advanced field—biomaterial research—is contemplated by one of its leading practitioners [
38]. The crowding of subdisciplines and specialties is remarkable: up to 32 different ones are listed. It could remind the domain accretion of some large protein of late eukaryotic evolution, as the figure itself suggests by representing specialties in a common circle of domains. Like in the evolutionary process, it makes sense that the most advanced scientific explorations incorporate larger troves of disciplines and specializations. That is particularly true in biomedical research, which has become one of the central and most complex scientific hubs of today.
As
Figure 3 suggests, all major research fields have to be surrounded by a “cloud” of disciplines in order to convey the necessary scientific-technologic knowledge. We propose the term “
domain of knowledge” to the particular collegiums of disciplines surrounding every major research field and potentially contributing to its knowledge recombination processes. It is clear, as in the case of
Figure 3, that only some specialties or subdisciplines of each major science are actively involved in the exchange processes. Even at the level of a concrete subdiscipline, the real granularity of the exchanges concerns “modules of specialization” that incorporate theoretical and practical knowledge. Research fields are but niches of opportunity that attract expertise of different disciplines and organize new domains of knowledge; if the research is successful and expectations are fulfilled, new disciplines of inter-multi-disciplinary nature will arise subtended by a new,
ad hoc research community [
36].
It has been estimated that after the industrial revolution, the number of scientists and research fields has approximately doubled with each passing generation [
39]. At the height of the 1990s, it has been estimated that more than 8000 research topics or fields were supported by approximately 4000 disciplines [
21]. To the extent in which those estimates are cogent, the number of disciplines could have increased to 5000–6000 nowadays, supporting around 10,000 research fields.
Figure 3.
Disciplines involved in modern biomaterial research. The representation is based on the description made by bioengineer J. Kirkpatrick [
39] (Modified from [
20]).
Scientometric studies have already provided rigorous and useful “science maps”, during the last three decades; they were based on citation structures and have grown enormously—keeping pace with Moore’s Law—up to impressive dimensions and multidisciplinary coverage. Representations derived from some million papers covering almost all research fields have been obtained recently [
40]. Notwithstanding that computational prowess, generative hypotheses on the overall science and society relationships underlying that unstoppable scientific growth continue to be in short supply.
5. The “Scientomic” Approach
From the point of view of information science, in the same way that philosophies of science, history of science, and psychology and sociology of science have already been developed, we would also need a genuine informational approach to sciences’ generative processes:
scientomics [
36].
In practical terms, at the time being there might be sufficient scope to compare the biological evolution of DNA codes of protein domains and the social-historical evolution of scientific disciplinary contents. Do cognitive “modules” exist within disciplines that travel to other disciplines and generate new fields there? If so, could the combinatory processes in both realms be interrelated? See
Figure 4, which illustrates the parallel between the Big Bang of protein domains and the explosive growth of the sciences.
Culturomics might have already paved part of the way. Borrowing the main concepts and techniques from evolutionary biology, J.B. Michel and E.L. Aiden were able to track the growth, change, and decline of the most meaningful
published words during the last centuries [
41]. The new term they have coined,
culturomics, means the application of “genomic techniques” of high-throughput data collection and analysis to the study of human culture, as sampled in a vast mapping of words from a corpus of digitized books, containing about 4% of all printed books ever published. Further sources might be incorporated to the culturomic stock: newspapers, manuscripts, maps, artwork,
etc. Analysis of this corpus enables a new qualitative and quantitative investigation of cultural trends, social and political influences, fashions, and all sort of cultural phenomena.
Figure 4.
Parallel between recombination events in the evolution of the protein universe and in the evolution of the sciences. (a) The “big bang” of protein universe; (b) Subdisciplines of mathematics (Modified from [
20]).
Thus, the knowledge recombination hypothesis applied to the historical evolution of science might be considered in scientomic terms, as an evolutionary quest on the combinatory activity of disciplinary modules or domains of theoretical-practical knowledge travelling to other disciplines and changing there the local textures of knowledge, altering the regional maps of science, and the whole complexion of the world of knowledge at large. In other words, influential modules such as Euclidian geometry, Newtonian mechanics, differential equations, genetics, and so on (and a multitude of other minor modules), would have generated the history of sciences, not only “developmentally” inside their own fields, but even more “combinatorially”, propelling the multidisciplinary evolution and cross-fertilization among scientific disciplines.
In terms of education science, something similar would happen, for an abridged recapitulation resembling Haeckel’s law seems to be taking place in the ontogenetic development of an individual’s knowledge, which somehow recapitulates the fundamentals of the social acquisition of knowledge along history.
Scientomics, as we are suggesting, could be an important future task for the consolidation of information science, as well as a multidisciplinary research-project running in parallel to current achievements of culturomics in the cultural realm, though pointing to some more ambitious epistemic goals. Indeed, the creation of a proficient “scientomics” new field would help to make sense of the historical processes of science, and of human knowledge in action.
From different disciplinary sources, pioneering authors have already recognized the multi-disciplinary implications of
knowledge recombination [
36]. At the philosophical and scientific scale, W. Ostwald’s “Kombinatorik” [
42] was notoriously applied not only to nature but also to knowledge organization and creativity processes [
43]. In the social realm, J.C. Scott [
10] has discussed how the limitations of human expertise are forcing cognizing individuals to “play” recombination games. In the technological realm, historians have already been aware, at least since C. Gilfillan [
44], that innovations stem from combinations of what is already known. More recently, the work of W.B. Arthur [
37] is intensely dealing with the evolution of technological systems through the social organization of “knowledge recombination processes”. In the history of science, scholars of interdisciplinarity have been progressively aware of the recombination phenomenon in the relationship between disciplines [
45]; a number of new ideas and projects have also been developed during the last two decades [
21]. The present approach may also be related to deep theories of science [
46], and to the sociology and psychology of science [
47,
48]. The ideas that have been presented here, which may be considered as germane or as a rough continuation of some of these previous works, are now drafted from an emerging bioinformational perspective—they put together a new recombinatory “scientomic” sense that may be applied upon the inter-multi-pluri-trans-disciplinary games within the sciences.