Implementation of Classical Communication in a Quantum World
Abstract
:1. Introduction
2. Preliminaries
2.1. Assumption: Quantum Theory is Universal
2.2. Consequence: Measurements are Actions by POVMs
2.3. Consequence: Observers must Identify the Systems They Observe
Nothing is said in this definition, or in the surrounding discussion [4,5], about how observers are able to “access” a physical system “without prior knowledge” of such state variables as its location, size or shape, and without “prior agreement” about which item in their shared environment constitutes the system of interest. To find the identification of physical systems by observers treated explicitly, one must look to cybernetics, where unique identification of even classical finite-state machines (FSMs) by finite sequences of finite observations is shown to be impossible in principle [19,20], or to the cognitive neuroscience of perception, where the identification in practice of individual systems over extended periods of time is recognized as a computationally-intensive heuristic process [21,22,23].“A property of a physical system is objective when it is:
simultaneously accessible to many observers, who are able to find out what it is without prior knowledge about the system of interest, and who can arrive at a consensus about it without prior agreement.”
3. Decompositional Equivalence and Its Consequences
3.1. Assumption: Our Universe Exhibits Decompositional Equivalence
3.2. Consequence: System-Environment Decoherence can have No Physical Consequences
3.3. Consequence: Identification of Systems by Observers is Intrinsically Ambiguous
4. Decoherence as Semantics
4.1. Decoherence as Implemented by a POVM
4.2. Decoherence Defines a Virtual Machine
5. Observation as Entanglement
5.1. Classical Communication is Regressive
5.2. Memory is Communication
5.3. Implementation of POVMs by HU
6. Conclusions
References
- Nielsen, M.A.; Chaung, I.L. Quantum Information and Quantum Computation; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Landauer, R. Information is a physical entity. Physica A 1999, 263, 63–67. [Google Scholar] [CrossRef]
- Fields, C. If physics is an information science, what is an observer? Information 2012, 3, 92–123. [Google Scholar]
- Ollivier, H.; Poulin, D.; Zurek, W.H. Objective properties from subjective quantum states: Environment as a witness. Phys. Rev. Lett. 2004, 93, 220401:1–220401:4. [Google Scholar]
- Ollivier, H.; Poulin, D.; Zurek, W.H. Environment as a witness: Selective proliferation of information and emergence of objectivity in a quantum universe. Phys. Rev. A 2005, 72, 042113:1–042113:21. [Google Scholar]
- Blume-Kohout, R.; Zurek, W.H. Quantum Darwinism: Entanglement, branches, and the emergent classicality of redundantly stored quantum information. Phys. Rev. A 2006, 73, 062310:1–062310:21. [Google Scholar]
- Zurek, W.H. Quantum Darwinism. Nat. Phys. 2009, 5, 181–188. [Google Scholar] [CrossRef]
- Griffiths, R.B. Consistent Quantum Theory; Cambridge University Press: New York, NY, USA, 2002. [Google Scholar]
- Everett, H., III. “Relative state” formulation of quantum mechanics. Rev. Mod. Phys. 1957, 29, 454–462. [Google Scholar] [CrossRef]
- Landsman, N.P. Between classical and quantum. In Handbook of the Philosophy of Science: Philosophy of Physics; Butterfield, J., Earman, J., Eds.; Elsevier: Amsterdam, the Netherland, 2007; pp. 417–553. [Google Scholar]
- Schlosshauer, M. Experimental motivation and empirical consistency of minimal no-collapse quantum mechanics. Ann. Phys. 2006, 321, 112–149. [Google Scholar] [CrossRef]
- Deutsch, D. Quantum theory, the Church-Turing principle and the universal quantum computer. Proc. R. Soc. Lond. A 1985, 400, 97–117. [Google Scholar] [CrossRef]
- Farhi, E.; Gutmann, F. An analog analogue of a digital quantum computation. Phys. Rev. A 1996, 57, 2403–2406. [Google Scholar] [CrossRef]
- Briegel, H.J.; Browne, D.E.; Dür, W.; Raussendorf, R.; van den Nest, M. Measurement-based quantum computation. Nat. Phys. 2009, 5, 19–26. [Google Scholar]
- Aaronson, S. NP-complete problems and physical reality. Available online: http://arxiv.org/abs/quant-ph/0502072 (accessed on 6 December 2012).
- Wallace, D. Philosophy of quantum mechanics. In The Ashgate Companion to Contemporary Philosophy of Physics; Rickles, D., Ed.; Ashgate Publisher: Aldershot, UK, 2008; pp. 16–98. [Google Scholar]
- von Neumann, J. Mathematische Grundlagen der Quantenmechanik; Springer: Berlin, Germany, 1932. [Google Scholar]
- Fuchs, C.A. QBism: The perimeter of quantum Bayesianism. Available online: http://arxiv.org/abs/1003.5209 (accessed on 6 December 2012).
- Ashby, W.R. An Introduction to Cybernetics; Chapman and Hall: London, UK, 1956. [Google Scholar]
- Moore, E.F. Gedankenexperiments on sequential machines. In Autonoma Studies; Shannon, C.W., McCarthy, J., Eds.; Princeton University Press: Princeton, NJ, USA, 1956; pp. 129–155. [Google Scholar]
- Rips, L.; Blok, S.; Newman, G. Tracing the identity of objects. Psychol. Rev. 2006, 133, 1–30. [Google Scholar]
- Scholl, B.J. Object persistence in philosophy and psychology. Mind Lang. 2007, 22, 563–591. [Google Scholar] [CrossRef]
- Fields, C. The very same thing: Extending the object token concept to incorporate causal constraints on individual identity. Adv. Cogn. Psychol. 2012, 8, 234–247. [Google Scholar]
- Zurek, W.H. Decoherence, einselection and the existential interpretation (the rough guide). Philos. Trans. R. Soc. A 1998, 356, 1793–1821. [Google Scholar] [CrossRef]
- Zurek, W.H. Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 2003, 75, 715–775. [Google Scholar] [CrossRef]
- Aad, G.; Abajyan, T.; Abbott, B.; Abdallah, J.; Abdel-Khalek, S.; Abdelalim, A.A.; Abdinov, O.; Abenm, R.; Abi, B.; Abolins, M.; et al. Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B 2012, 716, 1–29. [Google Scholar] [CrossRef] [Green Version]
- CMS Collaboration. Combined results of searches for the standard model Higgs boson in pp collisions at √s = 7 TeV. Phys. Lett. B 2012, 710, 26–48.
- Fields, C. A model-theoretic interpretation of environmentally-induced superselection. Int. J. Gen. Syst. 2012, 41, 847–859. [Google Scholar] [CrossRef]
- Hu, B.L. Emergence: Key physical issues for deeper philosophical inquiries. J. Phys. Conf. Ser. 2012, 361. [Google Scholar] [CrossRef]
- Tegmark, M. The mathematical universe. Found. Phys. 2008, 38, 101–150. [Google Scholar] [CrossRef]
- Schlosshauer, M. Decoherence, the measurement problem, and interpretations of quantum theory. Rev. Mod. Phys. 2004, 76, 1267–1305. [Google Scholar] [CrossRef]
- Schlosshauer, M. Decoherenceand the Quantum to Classical Transition; Springer: Berlin, Germany, 2007. [Google Scholar]
- Zurek, W.H. Pointer basis of the quantum apparatus: Into what mixture does the wave packet collapse? Phys. Rev. D 1981, 24, 1516–1525. [Google Scholar] [CrossRef]
- Zurek, W.H. Environment-induced superselection rules. Phys. Rev. D 1982, 26, 1862–1880. [Google Scholar] [CrossRef]
- Joos, E.; Zeh, D. The emergence of classical properties through interaction with the environment. Z. Phys. B 1985, 59, 223–243. [Google Scholar] [CrossRef]
- Zurek, W.H. Decoherence, chaos, quantum-classical correspondence, and the algorithmic arrow of time. Phys. Scr. 1998, 76, 186–198. [Google Scholar] [CrossRef]
- Brune, M.; Haglet, E.; Dreyer, J.; Maitre, X.; Maali, A.; Wunderlich, C.; Raimond, J.M.; Haroche, S. Observing the progressive decoherence of the meter in a quantum measurement. Phys. Rev. Lett. 1996, 77, 4887–4890. [Google Scholar]
- Fields, C. Bell’s theorem from Moore’s theorem. Int. J. Gen. Syst. Available online: http://arxiv.org/abs/1201.3672 (accessed on 10 December 2012). in press.
- Zeh, D. The problem of conscious observation in quantum mechanical description. Found. Phys. Lett. 2000, 13, 221–233. [Google Scholar] [CrossRef]
- Hartle, J.B. The quasiclassical realms of this quantum universe. Found. Phys. 2008, 41, 982–1006. [Google Scholar] [CrossRef]
- Tanenbaum, A.S. Structured Computer Organization; Prentice Hall: Englewood Cliffs, NJ, USA, 1976. [Google Scholar]
- Hopcroft, J.E.; Ullman, J.D. Introduction to Automata, Languages and Computation; Addison-Wesley: Boston, MA, USA, 1979. [Google Scholar]
- Wallace, D. Decoherence and ontology. In Many Worlds? Everett, Quantum Theory and Reality; Saunders, S., Barrett, J., Kent, A., Wallace, D.D., Eds.; Oxford University Press: Oxford, UK, 2010; pp. 53–72. [Google Scholar]
- Tegmark, M. Many worlds in contex. In Many Worlds? Everett, Quantum Theory and Reality; Saunders, S., Barrett, J., Kent, A., Wallace, D.D., Eds.; Oxford University Press: Oxford, UK, 2010; pp. 553–581. [Google Scholar]
- Scully, R.J.; Scully, M.O. The Demon and the Quantum: From the Pythagorean Mystics to Maxwell’s Demon and Quantum Mystery; Wiley: New York, NY, USA, 2007. [Google Scholar]
- Zanardi, P. Virtual quantum subsystems. Phys. Rev. Lett. 2001, 87, 077901:1–077901:4. [Google Scholar]
- Zanardi, P.; Lidar, D.A.; Lloyd, S. Quantum tensor product structures are observable-induced. Phys. Rev. Lett. 2004, 92, 060402:1–060402:4. [Google Scholar]
- de la Torre, A.C.; Goyeneche, D.; Leitao, L. Entanglement for all quantum states. Eur. J. Phys. 2010, 31, 325–332. [Google Scholar]
- Harshman, N.L.; Ranade, K.S. Observables can be tailored to change the entanglement of any pure state. Phys. Rev. A 2011, 84, 012303:1–012303:4. [Google Scholar]
- Thirring, W.; Bertlmann, R.A.; Köhler, P.; Narnhofer, H. Entanglement or separability: The choice of how to factorize the algebra of a density matrix. Eur. Phys. J. D 2011, 64, 181–196. [Google Scholar]
- Bartlett, S.D.; Rudolph, T.; Spekkens, R.W. Reference frames, superselection rules, and quantum information. Rev. Mod. Phys. 2007, 79, 555–609. [Google Scholar]
- Bohr, N. The quantum postulate and the recent developments of atomic theory. Nature 1928, 121, 580–590. [Google Scholar]
- Zurek, W.H. Relative states and the environment: Einselection, envariance, quantum darwinism, and the existential interpretation. Available online: http://arxiv.org/abs/0707.2832 (accessed on 10 December 2012).
- Castagnoli, G. Quantum correlation between the selection of the problem and that of the solution sheds light on the mechanism of the speed up. Phys. Rev. A 2010, 82, 052334:1–052334:8. [Google Scholar]
- Castagnoli, G. Probing the mechanism of the quantum speed-up by time-symmetric quantum mechanics. Available online: http://128.84.158.119/abs/1107.0934v9 (accessed on 10 December 2012).
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Fields, C. Implementation of Classical Communication in a Quantum World. Information 2012, 3, 809-831. https://doi.org/10.3390/info3040809
Fields C. Implementation of Classical Communication in a Quantum World. Information. 2012; 3(4):809-831. https://doi.org/10.3390/info3040809
Chicago/Turabian StyleFields, Chris. 2012. "Implementation of Classical Communication in a Quantum World" Information 3, no. 4: 809-831. https://doi.org/10.3390/info3040809
APA StyleFields, C. (2012). Implementation of Classical Communication in a Quantum World. Information, 3(4), 809-831. https://doi.org/10.3390/info3040809