Fujairah Honey Chain (FHC): A Blockchain Framework for Monitoring Honey Production
Abstract
1. Introduction
- RQ1: Is the proposed honey production monitoring framework economically feasible?
- RQ2: Are there any computational and operational issues that challenge implementing the proposed blockchain framework?
- We develop a blockchain-based honey trading monitoring framework.
- We design a tracking mechanism to monitor the flow of honey products in the trade supply chain.
- We design an oracle component that ensures the authenticity and accuracy of the uploaded information and images to the blockchain.
- We implement the proposed framework in Solidity (0.8.17), where Hardhat is used as the development environment. Any Ethereum-compatible blockchain can be used as the targeted network.
Key Contributions
2. Related Work
3. The Proposed Framework
3.1. Trade Component
3.1.1. Registration
3.1.2. Honey Trade Service Request
3.1.3. Token Generation and Verification
3.1.4. Sell Order
3.2. The Monitoring Component
3.2.1. QoS Agreement Definition
Algorithm 1: defineAgreement |
3.2.2. Agreement Traversing
Algorithm 2: traverse |
3.3. Oracle Component
3.3.1. Images
3.3.2. Sensor Readings
Algorithm 3: sensorAuthentication |
3.4. Security and Decentralization Aspects
3.4.1. Decentralization and the Regulatory Entity
3.4.2. Accounts and Wallet Addresses
3.4.3. Counterfeit Goods and Auditing
3.4.4. Oracle Implementation
3.4.5. Targeted Deployment Blockchain
4. Results and Discussion
4.1. Experiment Settings
4.2. Cost Analysis
4.3. Senor Readings
4.4. Image Classification
4.5. Discussion and Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Painkra, K.; Painkra, G.; Shaw, S.; Dubey, V.; PK, B. Studies on identification of monofloral/multifloral honey by pollen morphology. Int. J. Adv. Biochem. Res. 2024, 8, 709–716. [Google Scholar]
- Hameed, O.M.; Shaker, O.M.; Ben Slima, A.; Makni, M. Biochemical Profiling and Physicochemical and Biological Valorization of Iraqi Honey: A Comprehensive Analysis. Molecules 2024, 29, 671. [Google Scholar] [CrossRef] [PubMed]
- Kachinde, J.L.; Fweja, L.W.; Mihale, M.J. Evaluation of the Effect of Handling, Processing, and Storage Practices on the Quality of Honey Products from Selected Honey-producing Villages in Central Tanzania. Asian J. Food Res. Nutr. 2023, 2, 64–72. [Google Scholar]
- Popescu, A.; Dinu, T.; Stoian, E.; Serban, V. Beehives and Honey Production—A Brief Statistics in the World and European Union 2000–2022 and Honey Bees Between Interlinked Crisis of Biodiversity, Pollution and Climate Change. Sci. Pap. Ser. Manag. Econ. Eng. Agric. Rural. Dev. 2024, 24, 655–676. [Google Scholar]
- Salomea, J.A.; Mirzac, S.B.; Ridouanec, F.L.; Al Taiba Farms, F. Comparison Analysis of Honeydew Honey Production and Quality in Fujairah, UAE and Other Regions of the World: A Review. Int. J. Innov. Sci. Res. Technol. 2022, 7, 55–63. [Google Scholar]
- Osaili, T.M.; Bani Odeh, W.A.M.; Al Sallagi, M.S.; Al Ali, A.A.S.A.; Obaid, R.S.; Garimella, V.; Bakhit, F.S.B.; Hasan, H.; Holley, R.; El Darra, N. Quality of Honey Imported into the United Arab Emirates. Foods 2023, 12, 729. [Google Scholar] [CrossRef]
- Fakhlaei, R.; Selamat, J.; Khatib, A.; Razis, A.F.A.; Sukor, R.; Ahmad, S.; Babadi, A.A. The toxic impact of honey adulteration: A review. Foods 2020, 9, 1538. [Google Scholar] [CrossRef]
- Polakova, K.; Bobková, A.; Demianová, A.; Bobko, M.; Jurčaga, L.; Mesárošová, A.; Čapla, J.; Timoracká, I.; Lidiková, J.; Čeryová, N. Adulteration in Food Industry in 2023-Overview. J. Microbiol. Biotechnol. Food Sci. 2024, 13, e11048. [Google Scholar] [CrossRef]
- Brar, D.; Pant, K.; Krishnan, R.; Kaur, S.; Rasane, P.; Nanda, V.; Saxena, S.; Gautam, S. A Comprehensive Review on Unethical Honey: Validation by Emerging Techniques. Food Control 2023, 145, 109482. [Google Scholar] [CrossRef]
- Ždiniaková, T.; Lörchner, C.; De Rudder, O.; Dimitrova, T.; Kaklamanos, G.; Breidbach, A.; Respaldiza, A.; Vaz Silva, I.; Paiano, V.; Ulberth, F.; et al. EU Coordinated Action to Deter Certain Fraudulent Practices in the Honey Sector; Technical Report; Publications Office of the European Union: Luxembourg, 2023. [Google Scholar]
- Almiani, K.; Alrub, M.A.; Lee, Y.C.; Rashidi, T.H.; Pasdar, A. A Blockchain-Based Auction Framework for Location-Aware Services. Algorithms 2023, 16, 340. [Google Scholar] [CrossRef]
- Chen, E.; Qin, B.; Zhu, Y.; Song, W.; Wang, S.; Chu, C.C.W.; Yau, S.S. SPESC-Translator: Towards Automatically Smart Legal Contract Conversion for Blockchain-Based Auction Services. IEEE Trans. Serv. Comput. 2022, 15, 3061–3076. [Google Scholar] [CrossRef]
- Wu, S.; Chen, Y.; Wang, Q.; Li, M.; Wang, C.; Luo, X. CReam: A Smart Contract Enabled Collusion-Resistant e-Auction. IEEE Trans. Inf. Forensics Secur. 2019, 14, 1687–1701. [Google Scholar] [CrossRef]
- Lee, J.S.; Chew, C.J.; Chen, Y.C.; Wei, K.J. Preserving Liberty and Fairness in Combinatorial Double Auction Games Based on Blockchain. IEEE Syst. J. 2021, 15, 3517–3527. [Google Scholar] [CrossRef]
- Liu, L.; Du, M.; Ma, X. Blockchain-Based Fair and Secure Electronic Double Auction Protocol. IEEE Intell. Syst. 2020, 35, 31–40. [Google Scholar] [CrossRef]
- Blass, E.O.; Kerschbaum, F. Strain: A Secure Auction for Blockchains. In European Symposium on Research in Computer Security; Lopez, J., Zhou, J., Soriano, M., Eds.; Springer: Cham, Switzerland, 2018; pp. 87–110. [Google Scholar]
- AlSuwaidi, M.; Almarri, M.H.; Almi’Ani, K.; Lee, Y.C.; Pasdar, A.; Hameed, Z. Blockchain-based Framework for Housing Establishments Support Services. In Proceedings of the ACSW ’24, 2024 Australasian Computer Science Week, New York, NY, USA, 29 January–2 February 2024; pp. 14–19. [Google Scholar] [CrossRef]
- Juma, H.; Shaalan, K.; Kamel, I. A Survey on Using Blockchain in Trade Supply Chain Solutions. IEEE Access 2019, 7, 184115–184132. [Google Scholar] [CrossRef]
- Liu, L.; Piao, C.; Jiang, X.; Zheng, L. Research on Governmental Data Sharing Based on Local Differential Privacy Approach. In Proceedings of the 2018 IEEE 15th International Conference on e-Business Engineering (ICEBE), Xi’an, China, 12–14 October 2018; pp. 39–45. [Google Scholar] [CrossRef]
- Karaduman, Ö.; Gülhas, G. Blockchain-Enabled Supply Chain Management: A Review of Security, Traceability, and Data Integrity Amid the Evolving Systemic Demand. Appl. Sci. 2025, 15, 5168. [Google Scholar] [CrossRef]
- Yigit, E.; Dag, T. Improving Supply Chain Management Processes Using Smart Contracts in the Ethereum Network Written in Solidity. Appl. Sci. 2024, 14, 4738. [Google Scholar] [CrossRef]
- Gigli, L.; Zyrianoff, I.; Montori, F.; Aguzzi, C.; Roffia, L.; Di Felice, M. A Decentralized Oracle Architecture for a Blockchain-Based IoT Global Market. IEEE Commun. Mag. 2023, 61, 86–92. [Google Scholar] [CrossRef]
- Alrawashdeh, T.; Almi’ani, K.; Choon Lee, Y.; Rashidi, T.H.; Hameed Mir, Z. Provisioning Deterministic Finite Automata for QoS Monitoring in Blockchain Decentralized Applications. IEEE Access 2024, 12, 77379–77392. [Google Scholar] [CrossRef]
- Vu, N.; Ghadge, A.; Bourlakis, M. Blockchain adoption in food supply chains: A review and implementation framework. Prod. Plan. Control 2023, 34, 506–523. [Google Scholar] [CrossRef]
- Risso, L.A.; Ganga, G.M.D.; Godinho Filho, M.; de Santa-Eulalia, L.A.; Chikhi, T.; Mosconi, E. Present and future perspectives of blockchain in supply chain management: A review of reviews and research agenda. Comput. Ind. Eng. 2023, 179, 109195. [Google Scholar] [CrossRef]
- Raza, Z.; Haq, I.U.; Muneeb, M. Agri-4-all: A framework for blockchain based agricultural food supply chains in the era of fourth industrial revolution. IEEE Access 2023, 11, 29851–29867. [Google Scholar] [CrossRef]
- Shahid, A.; Almogren, A.; Javaid, N.; Al-Zahrani, F.A.; Zuair, M.; Alam, M. Blockchain-Based Agri-Food Supply Chain: A Complete Solution. IEEE Access 2020, 8, 69230–69243. [Google Scholar] [CrossRef]
- Azevedo, P.; Gomes, J.; Romão, M. Supply chain traceability using blockchain. Oper. Manag. Res. 2023, 16, 1359–1381. [Google Scholar] [CrossRef]
- Rünzel, M.A.S.; Hassler, E.E.; Rogers, R.E.L.; Formato, G.; Cazier, J.A. Designing a Smart Honey Supply Chain for Sustainable Development. IEEE Consum. Electron. Mag. 2021, 10, 69–78. [Google Scholar] [CrossRef]
- Paunović, M.; Alizadeh, Z. Conceptual Blockchain Model for Honey Supply Chain System. In Proceedings of the 5th International Scientific Conference Village and Agriculture, Bijeljina, Republika Srpska, Bosnia and Herzegovina, 30 September 2022; Bijeljina University: Bijeljina, Republic of Srpska, Bosnia and Herzegovina, 2022. [Google Scholar]
- Marchesi, L.; Mannaro, K.; Marchesi, M.; Tonelli, R. Automatic Generation of Ethereum-Based Smart Contracts for Agri-Food Traceability System. IEEE Access 2022, 10, 50363–50383. [Google Scholar] [CrossRef]
- Dobbins, A.; Sprinkle, A.; Hadley, B.; Cazier, J.; Wilkes, J. Blocks for bees: Solving bee business problems with blockchain technology. In Proceedings of the Appalachian Research in Business Symposium, East Tennessee State University, Johnson City, TN, USA, 22–23 March 2018; Volume 1. [Google Scholar]
- Madhwal, Y.; Pieber, E.; Yanovich, Y.; Yakushkina, T. Smart Contract Based Honey Production Supply Chain. In Proceedings of the ICBTA ’22—2022 5th International Conference on Blockchain Technology and Applications, New York, NY, USA, 12–14 July 2023; pp. 70–76. [Google Scholar] [CrossRef]
- Lukovac, P.; Miletić, A.; Radenković, B. A System for Tracking Organic Honey Production Using Blockchain Technologies. In International Symposium SymOrg; Springer: Cham, Switzerland, 2022; pp. 239–254. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Breunig, M.M.; Kriegel, H.P.; Ng, R.T.; Sander, J. LOF: Identifying Density-Based Local Outliers. In Proceedings of the SIGMOD ’00—2000 ACM SIGMOD International Conference on Management of Data, New York, NY, USA, 16–18 May 2000; pp. 93–104. [Google Scholar] [CrossRef]
Event Type () | Source Type () | Description |
---|---|---|
Temperature (t) | Sensor | Temperature reading |
Location (l) | GPS (IoT) | Location coordinates |
Light (l) | Sensor | Light level |
Humidity (h) | Sensor | Humidity level |
Note: Event location () is used to identify the location of the source. |
Contract | Function | Description |
---|---|---|
Trade | traverse | Process a new trade-related transaction received from logistic personnel or an IoT device. |
defineQoSAgreement | Define trade-related QoS constraints. | |
initiateTrade | Handle and record the details related to honey trade service. | |
createSellOrder | Create and store the new sell order. | |
DID | registerIoT | Called by the beekeeping business to register an IoT device. |
registerPersonnel | Called by the beekeeping business to register logistics personnel. | |
registerBeekeeping | Called to register a new beekeeping business. | |
de-registerBeekeeping | Called to unregister a beekeeping business. | |
de-registerIoT | Used to unregister an IoT device. | |
de-registerPersonnel | Used to unregister logistics personnel. | |
MM | mintTokens | Mint a new single non-fungible token and its associated fungible tokens. |
burnTokens | Used to burn tokens. | |
transferFungibleTokens | Used to transfer fungible tokens between addresses. | |
Oracle | processImage | Check the authenticity of the received image. |
processReading | Check the authenticity of the received sensor reading. |
Transaction Type | Gas Used | Cost (ETH) |
---|---|---|
traverse | 428,571 | 0.003 |
defineQoSAgreement | 1,085,714 | 0.0076 |
initiateTrade | 642,857 | 0.0045 |
createSellOrder | 31,109 | 0.000217 |
registerBeekeeping | 71,134 | 0.00049 |
de-registerBeekeeping | 30,172 | 0.00021 |
mintTokens | 172,896 | 0.0012 |
burnTokens | 37,172 | 0.00026 |
transferFungibleTokens | 30,957 | 0.00021 |
contracts deployment | 6,560,981 | 0.04592 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almiani, K.; Mirza, S.B.; Zufferey, C.; Alyammahi, K.M.; Lamghari, F. Fujairah Honey Chain (FHC): A Blockchain Framework for Monitoring Honey Production. Information 2025, 16, 626. https://doi.org/10.3390/info16080626
Almiani K, Mirza SB, Zufferey C, Alyammahi KM, Lamghari F. Fujairah Honey Chain (FHC): A Blockchain Framework for Monitoring Honey Production. Information. 2025; 16(8):626. https://doi.org/10.3390/info16080626
Chicago/Turabian StyleAlmiani, Khaled, Shaher Bano Mirza, Camille Zufferey, Khawla M. Alyammahi, and Fouad Lamghari. 2025. "Fujairah Honey Chain (FHC): A Blockchain Framework for Monitoring Honey Production" Information 16, no. 8: 626. https://doi.org/10.3390/info16080626
APA StyleAlmiani, K., Mirza, S. B., Zufferey, C., Alyammahi, K. M., & Lamghari, F. (2025). Fujairah Honey Chain (FHC): A Blockchain Framework for Monitoring Honey Production. Information, 16(8), 626. https://doi.org/10.3390/info16080626