The Gallery of Memories (GA-ME): A Novel Virtual Navigation Tool for the Study of Spatial Memory
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Waller, D.E.; Nadel, L.E. Handbook of Spatial Cognition; American Psychological Association: Washington, DC, USA, 2013; p. 309. [Google Scholar]
- Grieves, R.M.; Jedidi-Ayoub, S.; Mishchanchuk, K.; Liu, A.; Renaudineau, S.; Jeffery, K.J. The place-cell representation of volumetric space in rats. Nat. Commun. 2020, 11, 789. [Google Scholar] [CrossRef] [PubMed]
- Turner, C.H. Do ants form practical judgments? Biol. Bull. 1907, 13, 333–343. [Google Scholar] [CrossRef]
- Carr, H.; Watson, J.B. Orientation in the white rat. J. Comp. Neurol. Psychol. 1908, 18, 27–44. [Google Scholar] [CrossRef]
- O’Keefe, J.; Dostrovsky, J. The hippocampus as a spatial map: Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 1971, 34, 171–175. [Google Scholar] [CrossRef]
- Xu, N.; LaGrow, T.J.; Anumba, N.; Lee, A.; Zhang, X.; Yousefi, B.; Keilholz, S. Functional connectivity of the brain across rodents and humans. Front. Neurosci. 2022, 16, 816331. [Google Scholar] [CrossRef]
- O’keefe, J.; Nadel, L. The Hippocampus as a Cognitive Map; Oxford University Press: Oxford, UK, 1978. [Google Scholar]
- Squire, L.R. Memory and the hippocampus: A synthesis from findings with rats, monkeys, and humans. Psychol. Rev. 1992, 99, 195. [Google Scholar] [CrossRef]
- Shrager, Y.; Bayley, P.J.; Bontempi, B.; Hopkins, R.O.; Squire, L.R. Spatial memory and the human hippocampus. Proc. Natl. Acad. Sci. USA 2007, 104, 2961–2966. [Google Scholar] [CrossRef]
- Paxinos, G.; Watson, C. The Rat Brain in Stereotaxic Coordinates: Hard Cover Edition; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Feo, R.; Giove, F. Towards an efficient segmentation of small rodents brain: A short critical review. J. Neurosci. Methods 2019, 323, 82–89. [Google Scholar] [CrossRef]
- Herculano-Houzel, S. The human brain in numbers: A linearly scaled-up primate brain. Front. Hum. Neurosci. 2009, 3, 857. [Google Scholar] [CrossRef]
- Nadasdy, Z.; Nguyen, T.P.; Török, Á.; Shen, J.Y.; Briggs, D.E.; Modur, P.N.; Buchanan, R.J. Context-dependent spatially periodic activity in the human entorhinal cortex. Proc. Natl. Acad. Sci. USA 2017, 114, E3516–E3525. [Google Scholar] [CrossRef]
- Hafting, T.; Fyhn, M.; Molden, S.; Moser, M.B.; Moser, E.I. Microstructure of a spatial map in the entorhinal cortex. Nature 2005, 436, 801–806. [Google Scholar] [CrossRef] [PubMed]
- Tolman, E.C.; Ritchie, B.F.; Kalish, D. Studies in spatial learning. I. Orientation and the short-cut. J. Exp. Psychol. 1946, 36, 13. [Google Scholar] [CrossRef] [PubMed]
- Salas, C.; Broglio, C.; Durán, E.; Gómez, A.; Rodríguez, F. Spatial Learning in Fish. Learn. Mem. Compr. Ref. 2008, 1, 499–527. [Google Scholar] [CrossRef]
- Tolman, E.C. Cognitive maps in rats and men. Psychol. Rev. 1948, 55, 189. [Google Scholar] [CrossRef] [PubMed]
- Yerkes, R.M. The intelligence of earthworms. J. Anim. Behav. 1912, 2, 332. [Google Scholar] [CrossRef]
- Deacon, R.M.; Rawlins, J.N.P. T-maze alternation in the rodent. Nat. Protoc. 2006, 1, 7–12. [Google Scholar] [CrossRef]
- d’Isa, R.; Comi, G.; Leocani, L. Apparatus design and behavioural testing protocol for the evaluation of spatial working memory in mice through the spontaneous alternation T-maze. Sci. Rep. 2021, 11, 21177. [Google Scholar] [CrossRef]
- Olton, D.S.; Samuelson, R.J. Remembrance of places passed: Spatial memory in rats. J. Exp. Psychol. Anim. Behav. Process. 1976, 2, 97. [Google Scholar] [CrossRef]
- Barnes, C.A. Memory deficits associated with senescence: A neurophysiological and behavioral study in the rat. J. Comp. Physiol. Psychol. 1979, 93, 74. [Google Scholar] [CrossRef]
- Morris, R. Developments of a water-maze procedure for studying spatial learning in the rat. J. Neurosci. Methods 1984, 11, 47–60. [Google Scholar] [CrossRef]
- Buresova, O.; Bures, J. Role of olfactory cues in the radial maze performance of rats. Behav. Brain Res. 1981, 3, 405–409. [Google Scholar] [CrossRef] [PubMed]
- Mandal, S. How do animals find their way back home? A brief overview of homing behavior with special reference to social Hymenoptera. Insectes Sociaux 2018, 65, 521–536. [Google Scholar] [CrossRef]
- Malinowski, J.C.; Gillespie, W.T. Individual differences in performance on a largescale, real-world wayfinding task. J. Environ. Psychol. 2001, 21, 73–82. [Google Scholar] [CrossRef]
- Bingman, V.; Jechura, T.; Kahn, M.C. Behavioral and Neural Mechanisms of Homing and Migration in Birds. Animal Spatial Cognition: Comparative, Neural, and Computational Approaches. 2006. Available online: https://pigeon.psy.tufts.edu/asc/Bingman/Default.htm (accessed on 19 February 2025).
- Cagle, F.R. Home Range, Homing Behavior, and Migration in Turtles; University of Michigan Press: Ann Arbor, MI, USA, 1944. [Google Scholar]
- Dittman, A.H.; Quinn, T.P. Homing in Pacific salmon: Mechanisms and ecological basis. J. Exp. Biol. 1996, 199, 83–91. [Google Scholar] [CrossRef]
- Tsoar, A.; Nathan, R.; Bartan, Y.; Vyssotski, A.; Dell’Omo, G.; Ulanovsky, N. Large-scale navigational map in a mammal. Proc. Natl. Acad. Sci. USA 2011, 108, E718–E724. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Topalovic, U.; Barclay, S.; Ling, C.; Alzuhair, A.; Yu, W.; Hokhikyan, V.; Chandrakumar, H.; Rozgic, D.; Jiang, W.; Basir-Kazeruni, S.; et al. A wearable platform for closed-loop stimulation and recording of single-neuron and local field potential activity in freely moving humans. Nat. Neurosci. 2023, 26, 517–527. [Google Scholar] [CrossRef]
- Rizzo, A.A.; Buckwalter, J.G. Virtual reality and cognitive assessment and rehabilitation: The state of the art. Virtual Real. Neuro-Psycho-Physiol. 1997, 44, 123–145. [Google Scholar]
- Cogné, M.; Taillade, M.; N’Kaoua, B.; Tarruella, A.; Klinger, E.; Larrue, F.; Sorita, E. The contribution of virtual reality to the diagnosis of spatial navigation disorders and to the study of the role of navigational aids: A systematic literature review. Ann. Phys. Rehabil. Med. 2017, 60, 164–176. [Google Scholar] [CrossRef]
- Konishi, K.; Bohbot, V.D. Spatial navigational strategies correlate with gray matter in the hippocampus of healthy older adults tested in a virtual maze. Front. Aging Neurosci. 2013, 5, 28885. [Google Scholar] [CrossRef]
- Taillade, M.; Sauzéon, H.; Dejos, M.; Arvind Pala, P.; Larrue, F.; Wallet, G.; N’Kaoua, B. Executive and memory correlates of age-related differences in wayfinding performances using a virtual reality application. Aging Neuropsychol. Cogn. 2013, 20, 298–319. [Google Scholar] [CrossRef]
- Thurley, K. Naturalistic neuroscience and virtual reality. Front. Syst. Neurosci. 2022, 16, 896251. [Google Scholar] [CrossRef] [PubMed]
- Dickey, M.D. Engaging by design: How engagement strategies in popular computer and video games can inform instructional design. Educ. Technol. Res. Dev. 2005, 53, 67–83. [Google Scholar] [CrossRef]
- Coutrot, A.; Silva, R.; Manley, E.; de Cothi, W.; Sami, S.; Bohbot, V.D.; Wiener, J.M.; Hölscher, C.; Dalton, R.C.; Hornberger, M.; et al. Global Determinants of Navigation Ability. Curr. Biol. 2018, 28, 2861–2866.e4. [Google Scholar] [CrossRef] [PubMed]
- Allen, K.; Brändle, F.; Botvinick, M.; Fan, J.E.; Gershman, S.J.; Gopnik, A.; Griffiths, T.L.; Hartshorne, J.K.; Hauser, T.U.; Ho, M.K.; et al. Using games to understand the mind. Nat. Hum. Behav. 2024, 8, 1035–1043. [Google Scholar] [CrossRef]
- Koenig, S.; Crucian, G.; Dalrymple-Alford, J.; Dünser, A. Assessing navigation in real and virtual environments: A validation study. Int. J. Disabil. Hum. Dev. 2011, 10, 325–330. [Google Scholar] [CrossRef]
- Coutrot, A.; Schmidt, S.; Coutrot, L.; Pittman, J.; Hong, L.; Wiener, J.M.; Spiers, H.J. Virtual navigation tested on a mobile app is predictive of real-world wayfinding navigation performance. PLoS ONE 2019, 14, e0213272. [Google Scholar] [CrossRef]
- Tuena, C.; Mancuso, V.; Stramba-Badiale, C.; Pedroli, E.; Stramba-Badiale, M.; Riva, G.; Repetto, C. Egocentric and allocentric spatial memory in mild cognitive impairment with real-world and virtual navigation tasks: A systematic review. J. Alzheimer’s Dis. 2021, 79, 95–116. [Google Scholar] [CrossRef]
- Ekstrom, A.D.; Hill, P.F. Spatial navigation and memory: A review of the similarities and differences relevant to brain models and age. Neuron 2023, 111, 1037–1049. [Google Scholar] [CrossRef]
- Hejtmanek, L.; Starrett, M.; Ferrer, E.; Ekstrom, A.D. How much of what we learn in virtual reality transfers to real-world navigation? Multisensory Res. 2020, 33, 479–503. [Google Scholar] [CrossRef]
- Dirgantara, H.B.; Septanto, H. A Prototype of Web-based Picture Cards Matching Video Game for Memory Improvement Training. Int. J. New Media Technol. 2021, 8, 1–9. [Google Scholar] [CrossRef]
- Mouritsen, H.; Heyers, D.; Güntürkün, O. The neural basis of long-distance navigation in birds. Annu. Rev. Physiol. 2016, 78, 133–154. [Google Scholar] [CrossRef] [PubMed]
- Patla, A.E. Understanding the roles of vision in the control of human locomotion. Gait Posture 1997, 5, 54–69. [Google Scholar] [CrossRef]
- Ekstrom, A.; Kahana, M.; Caplan, J.B.; Fields, T.A.; Isham, E.A.; Newman, E.L.; Fried, I. Cellular networks underlying human spatial navigation. Nature 2003, 425, 184–188. [Google Scholar] [CrossRef]
- Doeller, C.; Barry, C.; Burgess, N. Evidence for grid cells in a human memory network. Nature 2010, 463, 657–661. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, J.; Weidemann, C.T.; Miller, J.F.; Solway, A.; Burke, J.F.; Wei, X.X.; Suthana, N.; Sperling, M.R.; Sharan, A.D.; Fried, I.; et al. Direct recordings of grid-like neuronal activity in human spatial navigation. Nat. Neurosci. 2013, 16, 1188–1190. [Google Scholar] [CrossRef] [PubMed]
- Tu, S.; Wong, S.; Hodges, J.R.; Irish, M.; Piguet, O.; Hornberger, M. Lost in spatial translation–A novel tool to objectively assess spatial disorientation in Alzheimer’s disease and frontotemporal dementia. Cortex 2015, 67, 83–94. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.; Watrous, A.J.; Tsitsiklis, M.; Lee, S.A.; Sheth, S.A.; Schevon, C.A.; Smith, E.H.; Sperling, M.R.; Sharan, A.; Asadi-Pooya, A.A.; et al. Lateralized hippocampal oscillations underlie distinct aspects of human spatial memory and navigation. Nat. Commun. 2018, 9, 2423. [Google Scholar] [CrossRef]
- Nadasdy, Z.; Howell, D.H.P.; Török, Á.; Nguyen, T.P.; Shen, J.Y.; Briggs, D.E.; Modur, P.N.; Buchanan, R.J. Phase coding of spatial representations in the human entorhinal cortex. Sci. Adv. 2022, 8, eabm6081. [Google Scholar] [CrossRef]
- Dobbels, B.; Mertens, G.; Gilles, A.; Moyaert, J.; van de Berg, R.; Fransen, E.; Van de Heyning, P.; Van Rompaey, V. The virtual Morris water task in 64 patients with bilateral vestibulopathy and the impact of hearing status. Front. Neurol. 2020, 11, 710. [Google Scholar] [CrossRef]
Environment | Spatial Memory | Age Scalability | Naturalistic Locomotion | High-Fidelity Rendering | Nested Spaces | Total |
---|---|---|---|---|---|---|
GA-ME | • | • | • | • | • | 5 |
Treasure hunt task in a tropical environment [52] | • | ° | • | • | 3.5 | |
Virtual Morris Water Maze [54] | • | • | 2 | |||
Bicycle riding game [50] | • | ° | 1.5 | |||
Backyard, Louvre, Temple of Luxor, Desert [13,53] | • | ° | • | 2.5 | ||
Circular field surrounded by mountains [49] | • | • | 2 | |||
Virtual taxi driving game [48] | ° | ° | 1 | |||
Virtual supermarket [51] | • | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ternei, Z.; Nadasdy, Z. The Gallery of Memories (GA-ME): A Novel Virtual Navigation Tool for the Study of Spatial Memory. Information 2025, 16, 436. https://doi.org/10.3390/info16060436
Ternei Z, Nadasdy Z. The Gallery of Memories (GA-ME): A Novel Virtual Navigation Tool for the Study of Spatial Memory. Information. 2025; 16(6):436. https://doi.org/10.3390/info16060436
Chicago/Turabian StyleTernei, Zsolt, and Zoltan Nadasdy. 2025. "The Gallery of Memories (GA-ME): A Novel Virtual Navigation Tool for the Study of Spatial Memory" Information 16, no. 6: 436. https://doi.org/10.3390/info16060436
APA StyleTernei, Z., & Nadasdy, Z. (2025). The Gallery of Memories (GA-ME): A Novel Virtual Navigation Tool for the Study of Spatial Memory. Information, 16(6), 436. https://doi.org/10.3390/info16060436