Will IP Location Openness Affect Posts?—An Empirical Examination from Sina Weibo
Abstract
1. Introduction
2. Literature Review
2.1. Social Media Participation and Location Disclosure
2.2. Information Surveillance, Privacy Cynicism, and Chilling Effects
2.2.1. Information Surveillance and Dataveillance
2.2.2. Privacy Cynicism and the Privacy Paradox
2.2.3. Surveillance, Privacy Cynicism, and Social Media Participation
2.3. Empirical Evidence on IP Location Openness and Geo-Tagging Policies
2.4. Research Gaps
2.5. Hypotheses Development
2.5.1. Perceived Surveillance and the Chilling Effect
2.5.2. Privacy Risk, Identifiability, and Identity-Revealing Behaviors
2.5.3. Gendered Privacy Concerns and Differential Vulnerability
3. Materials and Methods
3.1. Research Design
3.2. Data Sources
3.3. Variable Selection
3.4. Model Settings
3.4.1. Regression Discontinuity Design
3.4.2. Short-Run Panel Fixed-Effects Model
3.4.3. Long-Run Two-Way Fixed-Effects Model
3.4.4. Extension: Interaction with Regional Information and Clustered Errors
4. Results
4.1. Descriptive Statistical Analysis
4.2. Regression Discontinuity Analysis
4.3. Short-Run Panel Data Regression Analysis
4.4. Long-Run Panel Data Regression Analysis
| (1) | (2) | (3) | (4) | |
|---|---|---|---|---|
| Variable | Posting Microblogs | Reposting Microblogs | Posting Photos | Posting Geo-Tagged Microblogs |
| Launch of new function () | 0.109 *** | 0.0688 *** | 0.0549 *** | −0.0123 ** |
| (0.0193) | (0.0170) | (0.0116) | (0.00486) | |
| Constant | 0.937 *** | 0.630 *** | 0.249 *** | 0.0470 *** |
| (0.0136) | (0.0121) | (0.00823) | (0.00344) | |
| Individual fixed-effect | Yes | Yes | Yes | Yes |
| Time fixed-effect | Yes | Yes | Yes | Yes |
| Observations | 34,051 | 34,051 | 34,051 | 34,051 |
| R2 | 0.006 | 0.008 | 0.002 | 0.005 |
| Sample size | 2003 | 2003 | 2003 | 2003 |
4.5. Heterogeneity Analysis
4.6. Robustness Checks
| (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | |
|---|---|---|---|---|---|---|---|---|---|
| Model | Male Users | Female Users | Male Users | Female Users | Cutoff- (5th Week) | Bandwidth-5 Weeks | Time Window- 5 Weeks (Before/After) | Removing Outliers | Removing Outliers |
| Launch of new function () | −0.0513 | −0.0751 *** | 0.1120 *** | 0.1082 *** | −0.0674 *** | −0.0739 *** | 0.1073 *** | ||
| (0.0393) | (0.0216) | (0.0400) | (0.0220) | (0.0156) | (0.0191) | (0.0193) | |||
| Registration time period () | 0.0000 | 0.0065 | —— | —— | 0.0047 * | 0.0066 | —— | ||
| (0.0097) | (0.0053) | —— | —— | (0.0025) | (0.0047) | —— | |||
| Average treatment effect of RDD | 0.00665 | −0.0940 ** | |||||||
| (0.0342) | (0.0406) | ||||||||
| Constant | 1.1264 | −1.3694 | 1.0110 *** | 0.9143 *** | −0.6808 | −1.4439 | 0.8868 *** | ||
| (3.4756) | (1.9955) | (0.0283) | (0.0155) | (0.9063) | (1.7480) | (0.0137) | |||
| Term | Short run | Short run | Long run | Long run | —— | —— | Short run | Short run | Long run |
| Observations | 3381 | 10,640 | 8211 | 25,823 | 24,671 | 24,671 | 22,033 | 13,748 | 33,388 |
| R2 | 0.0023 | 0.0026 | 0.0042 | 0.0073 | 0.0016 | 0.0026 | 0.0060 | ||
| Sample size | 483 | 1520 | 483 | 1519 | 2003 | 1964 | 1964 |
| (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | |
|---|---|---|---|---|---|---|---|---|---|
| Model | Male Users | Female Users | Male Users | Female Users | Cutoff- (5th Week) | Bandwidth-5 Weeks | Time Window- 5 Weeks(Before/After) | Removing Outliers | Removing Outliers |
| Launch of new function () | −0.0460 | −0.0642 *** | 0.0408 | 0.0777 *** | −0.0465 *** | −0.0668 *** | 0.0684 *** | ||
| (0.0357) | (0.0191) | (0.0359) | (0.0194) | (0.0139) | (0.0169) | (0.0170) | |||
| Registration time period () | −0.00319 | 0.0055 | —— | —— | −0.0006 | 0.0062 | —— | ||
| (0.00885) | (0.0047) | —— | —— | (0.0022) | (0.0042) | —— | |||
| Average treatment effect of RDD | 0.00873 | −0.0894 *** | |||||||
| (0.0269) | (0.0318) | ||||||||
| Constant | 1.985 | −1.3732 | 0.7610 *** | 0.5894 *** | 0.9462 | −1.6308 | 0.5808 *** | ||
| (3.164) | (1.7673) | (0.0254) | (0.0137) | (0.8078) | (1.5498) | (0.0120) | |||
| Term | Short run | Short run | Long run | Long run | —— | —— | Short run | Short run | Long run |
| Observations | 3381 | 10,640 | 8211 | 25,823 | 27,574 | 27,574 | 22,033 | 13,748 | 33,388 |
| R2 | 0.004 | 0.0026 | 0.0045 | 0.0098 | 0.0026 | 0.0026 | 0.0080 | ||
| Sample size | 483 | 1520 | 483 | 1519 | 2003 | 1964 | 1964 |
| (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | |
|---|---|---|---|---|---|---|---|---|---|
| Model | Male Users | Female Users | Male Users | Female Users | Cutoff- (5th Week) | Bandwidth-5 Weeks | Time Window- 5 Weeks(Before/After) | Removing Outliers | Removing Outliers |
| Launch of new function () | 0.00306 | −0.0036 | 0.0490 ** | 0.0569 *** | −0.0040 | 0.0005 | 0.0539 *** | ||
| (0.0223) | (0.0143) | (0.0217) | (0.0137) | (0.0099) | (0.0121) | (0.0116) | |||
| Registration time period () | 0.00245 | 0.0028 | —— | —— | 0.0046 *** | 0.0023 | —— | ||
| (0.00552) | (0.0035) | —— | —— | (0.0016) | (0.0030) | —— | |||
| Average treatment effect of RDD | 0.0159 | −0.0122 | |||||||
| (0.0170) | (0.0192) | ||||||||
| Constant | −0.635 | −0.7498 | 0.2011 *** | 0.2643 *** | −1.3883 ** | −0.5834 | 0.2339 *** | ||
| (1.975) | (1.3194) | (0.0153) | (0.0097) | (0.5694) | (1.1074) | (0.0082) | |||
| Term | Short run | Short run | Long run | Long run | —— | —— | Short run | Short run | Long run |
| Observations | 3381 | 10,640 | 8211 | 25,823 | 31,552 | 31,552 | 21,703 | 13,748 | 33,388 |
| R2 | 0.000 | 0.0002 | 0.0020 | 0.0028 | 0.0014 | 0.0002 | 0.0024 | ||
| Sample size | 483 | 1520 | 483 | 1519 | 1973 | 1964 | 1964 |
| (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | |
|---|---|---|---|---|---|---|---|---|---|
| Model | Male Users | Female Users | Male Users | Female Users | Cutoff- (5th Week) | Bandwidth- 5 Weeks | Time Window- 5 Weeks(Before/After) | Removing Outliers | Removing Outliers |
| Launch of new function () | −0.0127 | −0.0219 *** | −0.0221 ** | −0.0091 * | −0.0211 *** | −0.0193 *** | −0.0129 *** | ||
| (0.0116) | (0.0052) | (0.0113) | (0.0053) | (0.0040) | (0.0049) | (0.0049) | |||
| Registration time period () | −0.00431 | 0.0011 | —— | —— | 0.0003 | −0.0004 | —— | ||
| (0.00286) | (0.0013) | —— | —— | (0.0006) | (0.0012) | —— | |||
| Average treatment effect of RDD | −0.00428 | −0.0139 * | |||||||
| (0.00679) | (0.00723) | ||||||||
| Constant | 1.600 | −0.3664 | 0.0605 *** | 0.0427 *** | −0.0459 | 0.1961 | 0.0467 *** | ||
| (1.023) | (0.4838) | (0.0080) | (0.0038) | (0.2315) | (0.4503) | (0.0035) | |||
| Term | Short run | Short run | Long run | Long run | —— | —— | Short run | Short run | Long run |
| Observations | 3381 | 10,640 | 8211 | 25,823 | 33,620 | 33,620 | 22,033 | 13,748 | 33,388 |
| R2 | 0.009 | 0.0053 | 0.0092 | 0.0039 | 0.0049 | 0.0060 | 0.0050 | ||
| Sample size | 483 | 1520 | 483 | 1519 | 2003 | 1964 | 1964 |
4.7. Clustered Standard Errors
5. Discussion
5.1. Theoretical and Practical Implications
5.2. Limitation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Additional Robustness Checks
| Variable | (1) Posting Microblogs | (2) Reposting Microblogs | (3) Posting Photos | (4) Geo-Tagged Microblogs |
|---|---|---|---|---|
| Launch of new function () | 0.1453 *** | 0.1344 *** | 0.2295 *** | −0.2745 ** |
| (0.0228) | (0.0297) | (0.0463) | (0.1344) | |
| Registration time period () | −0.0001 ** | −0.0002 *** | −0.0000 | 0.0002 |
| (0.0001) | (0.0001) | (0.0001) | (0.0004) | |
| Individual Fixed Effects | Yes | Yes | Yes | Yes |
| Week Fixed Effects | Yes | Yes | Yes | Yes |
| Observations | 33,541 | 30,702 | 24,548 | 7055 |
| Number of Groups | 1973 | 1806 | 1444 | 415 |
| Wald χ2 | 189.12 | 270.44 | 77.41 | 51.90 |
| Log Pseudolikelihood | −30,565.62 | −22,534.73 | −13,215.55 | −2178.06 |
References
- Chen, J.V.; Nguyen, H.V.V.; Ha, Q.A. Understanding Location Disclosure Behaviour via Social Networks Sites: A Perspective of Communication Privacy Management Theory. Comput. Hum. Behav. 2020, 18, 690–713. [Google Scholar] [CrossRef]
- Kim, H.-S. What Drives You to Check in on Facebook? Motivations, Privacy Concerns, and Mobile Phone Involvement for Location-Based Information Sharing. Comput. Hum. Behav. 2016, 54, 397–406. [Google Scholar] [CrossRef]
- Wang, S.; Stefanone, M. Showing off? Human mobility and the interplay of traits, self-disclosure, and Facebook check-ins. Soc. Sci. Comput. Rev. 2013, 31, 437–457. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, N.; Shen, X.; Zhang, J.X. Location Information Disclosure in Location-Based Social Network Services: Privacy Calculus, Benefit Structure, and Gender Differences. Comput. Hum. Behav. 2015, 52, 278–292. [Google Scholar] [CrossRef]
- Best, S.J.; Krueger, B.S.; Ladewig, J. Privacy in the Information Age. Public Opin. Q. 2006, 70, 375–401. [Google Scholar] [CrossRef]
- Oz, M.; Yanik, A. Fear of Surveillance: Examining Turkish Social Media Users’ Perception of Surveillance and Willingness to Express Opinions on Social Media. Mediterr. Polit 2024, 29, 1–25. [Google Scholar] [CrossRef]
- Cavusoglu, H.; Phan, T.Q.; Cavusoglu, H.; Airoldi, E.M. Assessing the Impact of Granular Privacy Controls on Content Sharing and Disclosure on Facebook. Inf. Syst. Res. 2016, 27, 848–879. [Google Scholar] [CrossRef]
- Liu, Y.-L.; Wu, Y.; Li, C.; Song, C.; Hsu, W.-Y. Does Displaying One’s IP Location Influence Users’ Privacy Behavior on Social Media? Evidence from China’s Weibo. Telecommun. Policy 2024, 48, 102759. [Google Scholar] [CrossRef]
- Jozani, M.; Ayaburi, E.; Ko, M.; Choo, K.-K.R. Privacy Concerns and Benefits of Engagement with Social Media-Enabled Apps: A Privacy Calculus Perspective. Comput. Hum. Behav. 2020, 107, 106–260. [Google Scholar] [CrossRef]
- Zhu, Y. Privacy Cynicism and Diminishing Utility of State Surveillance: A Natural Experiment of Mandatory Location Disclosure on China’s Weibo. Big Data Soc. 2024, 11, 20539517241242450. [Google Scholar] [CrossRef]
- Nemec Zlatolas, L.; Welzer, T.; Heričko, M.; Hölbl, M. Privacy Antecedents for SNS Self-Disclosure: The Case of Facebook. Comput. Hum. Behav. 2015, 45, 158–167. [Google Scholar] [CrossRef]
- Young, A.L.; Quan-Haase, A. Information revelation and Internet privacy concerns on social network sites: A case study of Facebook. In Proceedings of the International Conference on Communities and Technologies; Association for Computing Machinery: New York, NY, USA, 2009; pp. 265–274. [Google Scholar]
- Zhao, L.; Lu, Y.; Gupta, S. Disclosure intention of location-related information in location-based social network services. Int. J. Electron. Commer. 2012, 16, 53–90. [Google Scholar] [CrossRef]
- Siahaan, M.N.; Handayan, P.W.; Azzahro, F. Self-Disclosure of Social Media Users in Indonesia: The Influence of Personal and Social Media Factors. Inf. Technol. People 2021, 34, 1721–1739. [Google Scholar] [CrossRef]
- Valkenburg, P.M.; Peter, J. Social consequences of the Internet for adolescents: A decade of research. Curr. Dir. Psychol. Sci. 2009, 18, 1–5. [Google Scholar] [CrossRef]
- Bleier, A.; Goldfarb, A.; Tucker, C. Consumer Privacy and the Future of Data-Based Innovation and Marketing. Int. J. Res. Mark. 2020, 37, 466–480. [Google Scholar] [CrossRef]
- Yuan, Y.; Wei, G.; Lu, Y. Evaluating Gender Representativeness of Location-Based Social Media: A Case Study of Weibo. Ann. GIS 2018, 24, 163–176. [Google Scholar] [CrossRef]
- Luo, C.; Liu, J.; Yang, T.; Xu, J. Combating Disinformation or Reinforcing Cognitive Bias: Effect of Weibo Poster’s Location Disclosure. Media Commun. 2023, 11, 88–100. [Google Scholar] [CrossRef]
- Alrayes, F.S.; Abdelmoty, A.I.; El-Geresy, W.B.; Theodorakopoulos, G. Modelling Perceived Risks to Personal Privacy from Location Disclosure on Online Social Networks. Int. J. Geogr. Inf. Sci. 2020, 34, 150–176. [Google Scholar] [CrossRef]
- Strycharz, J.; Segijn, C.M. The future of dataveillancein advertising theory and practice. J. Advert. 2022, 51, 574–591. [Google Scholar] [CrossRef]
- Kappeler, K.; Festic, N.; Latzer, M. Dataveillance imaginaries and their role in chilling effects online. Int. J. Hum.-Comput. Stud. 2023, 179, 103120. [Google Scholar] [CrossRef]
- Hoffmann, C.P.; Lutz, C.; Ranzini, G. Privacy Cynicism: A New Approach to the Privacy Paradox. Cyberpsychol. J. Psychosoc. Res. Cyberspace 2016, 10, 7. [Google Scholar] [CrossRef]
- Hargittai, E.; Marwick, A. “What Can I Really Do?” Explaining the Privacy Paradox with Online Apathy. Int. J. Commun. 2016, 10, 21. [Google Scholar]
- Choi, H.; Jung, Y. Online Users’ Cynical Attitudes towards Privacy Protection: Examining Privacy Cynicism. Asia Pac. J. Inf. Syst. 2020, 30, 547–567. [Google Scholar] [CrossRef]
- Yu, L.; He, L.; Du, J.; Wu, X. Protection or cynicism? Dual strategies for coping with privacy threats. Inf. Syst. Front. 2024, 27, 1507–1527. [Google Scholar] [CrossRef]
- Chen, S.; Wu, Y.; Deng, F.; Zhi, K. How Does Ad Relevance Affect Consumers’ Attitudes toward Personalized Advertisements and Social Media Platforms? The Role of Information Co-Ownership, Vulnerability, and Privacy Cynicism. J. Retail. Consum. Serv. 2023, 73, 103336. [Google Scholar] [CrossRef]
- Ballesteros Herencia, C.A. El Índice de Engagement en Redes Sociales, una Medición Emergente en la Comunicación Académica y Organizacional. Razón Palabra 2018, 22, 96–124. [Google Scholar]
- Li, J.; Xiao, W.; Zhang, C. Data Security Crisis in Universities: Identification of Key Factors Affecting Data Breach Incidents. Humanit. Soc. Sci. Commun. 2023, 10, 270. [Google Scholar] [CrossRef]
- Cvijikj, I.P.; Michahelles, F. Online engagement factors on Facebook brand pages. Soc. Netw. Anal. Min. 2013, 3, 843–861. [Google Scholar] [CrossRef]
- Rishika, R.; Kumar, A.; Janakiraman, R.; Bezawada, R. The effect of customers’ social media participation on customer visit frequency and profitability: An empirical investigation. Inf. Syst. Res. 2013, 24, 108–127. [Google Scholar] [CrossRef]
- Claussen, J.; Kretschmer, T.; Mayrhofer, P. The Effects of Rewarding User Engagement: The Case of Facebook Apps. Inf. Syst. Res. 2013, 24, 186–200. [Google Scholar] [CrossRef]
- Guo, Y.; Li, Y.; Yang, T. Civilizing social media: The effect of geolocation on the incivility of news comments. New Media Soc. 2023, 27, 14614448231218989. [Google Scholar] [CrossRef]
- Li, Y.; Xue, H.; Du, Q. Tagged by region: How IP labels affect people in social media. Inf. Technol. Manag. 2025. [Google Scholar] [CrossRef]
- Yang, L.; Xu, Y. User location disclosure fails to deter overseas criticism but amplifies regional divisions on Chinese social media. SSRN Electron. J. [CrossRef]
- Cui, M.; Ding, F.; Cai, K. The Influence of Self-Efficacy of College Students in Privacy Protection and Behavior in Social Networking Context. Sci. Soc. Res. 2024, 6, 126–143. [Google Scholar] [CrossRef]
- Brandtzaeg, P.B. Facebook Is No “Great Equalizer”: A Big Data Approach to Gender Differences in Civic Engagement across Countries. Soc. Sci. Comput. Rev. 2017, 35, 103–125. [Google Scholar] [CrossRef]
- Malik, A.; Hiekkanen, K.; Nieminen, M. Privacy and Trust in Facebook Photo Sharing: Age and Gender Differences. Program Electron. Libr. Inf. Syst. 2016, 50, 462–480. [Google Scholar] [CrossRef]
- Taddicken, M. The privacy paradox in the social web: The impact of privacy concerns, individual characteristics, and the perceived social relevance on different forms of self-disclosure. J. Comput.-Mediat. Commun. 2014, 19, 248–273. [Google Scholar] [CrossRef]
- Meier, Y.; Schäwel, J.; Krämer, N.C. The shorter the better? Effects of privacy policy length on online privacy decision-making. Media Commun. 2020, 8, 291–301. [Google Scholar] [CrossRef]
- Hsieh, S.H.; Lee, C.T. Traces of mobility: Examining location disclosure on social networks with mobile location tagging. Telemat. Inform. 2020, 49, 101366. [Google Scholar] [CrossRef]
- Gruzd, A.; Hernández-García, Á. Privacy concerns and self-disclosure in private and public uses of social media. Cyberpsychol. Behav. Soc. Netw. 2018, 21, 418–428. [Google Scholar] [CrossRef]
- Henry, N.; Powell, A. Embodied harms: Gender, shame, and technology-facilitated sexual violence. Violence Against Women 2015, 21, 758–779. [Google Scholar] [CrossRef]
- Special, W.P.; Li-Barber, K.T. Self-Disclosure and Student Satisfaction with Facebook. Comput. Hum. Behav. 2012, 28, 624–630. [Google Scholar] [CrossRef]


| Features | Categories | Frequency | Percent |
|---|---|---|---|
| Gender | Male | 484 | 24.12% |
| Female | 1523 | 75.88% | |
| Registration time period | Under 5 years | 581 | 28.95% |
| 5–10 years | 944 | 47.04% | |
| Above 10 years | 481 | 23.97% | |
| Disclosure of address | Yes | 1332 | 66.37% |
| No | 675 | 33.63% | |
| IP location vs. address | Consistent | 835 | 62.69% |
| Inconsistent | 497 | 37.31% |
| Variable | Time Period | Minimum | Maximum | Average | Std. Dev. |
|---|---|---|---|---|---|
| Posting microblogs | 1–8th week | 0 | 1018 | 4.71 | 16.44 |
| 10–17th week | 0 | 356 | 4.91 | 14.20 | |
| Reposting microblogs | 1–8th week | 0 | 1014 | 3.10 | 14.87 |
| 10–17th week | 0 | 326 | 3.21 | 12.16 | |
| Posting Photos | 1–8th week | 0 | 56 | 0.64 | 1.77 |
| 10–17th week | 0 | 40 | 0.70 | 1.83 | |
| Posting geo-tagged microblogs | 1–8th week | 0 | 14 | 0.10 | 0.59 |
| 10–17th week | 0 | 22 | 0.06 | 0.55 |
| (1) | (2) | (3) | (4) | |
|---|---|---|---|---|
| Variable | Posting Microblogs | Reposting Microblogs | Posting Photos | Posting Geo-Tagged Microblogs |
| Before and after the launch of new function | −0.122 *** | −0.121 *** | −0.0114 | −0.0147 ** |
| (0.0352) | (0.0273) | (0.0169) | (0.00629) | |
| Observations | 23,250 | 25,970 | 29,707 | 31,655 |
| (1) | (2) | (3) | (4) | |
|---|---|---|---|---|
| Variable | Posting Microblogs | Reposting Microblogs | Posting Photos | Posting Geo-Tagged Microblogs |
| Launch of new function () | −0.0693 *** | −0.0598 *** | −0.00200 | −0.0197 *** |
| (0.0189) | (0.0169) | (0.0121) | (0.00485) | |
| Registration time period () | 0.00491 | 0.00339 | 0.00275 | −0.000208 |
| (0.00468) | (0.00417) | (0.00299) | (0.00120) | |
| Constant | −0.748 | −0.538 | −0.721 | 0.124 |
| (1.731) | (1.544) | (1.106) | (0.444) | |
| Individual fixed-effect | Yes | Yes | Yes | Yes |
| Time fixed-effect | No | No | No | No |
| Observations | 14,021 | 14,021 | 14,021 | 14,021 |
| R2 | 0.003 | 0.003 | 0.000 | 0.006 |
| Sample size | 2003 | 2003 | 2003 | 2003 |
| (1) | (2) | (3) | (4) | |
|---|---|---|---|---|
| Variable | Posting Microblogs | Reposting Microblogs | Posting Photos | Posting Geo-Tagged Microblogs |
| Launch of new function * regional info | 0.0625 | 0.0534 * | 0.0262 ** | −0.0147 *** |
| (0.0382) | (0.0255) | (0.0102) | (0.0030) | |
| Constant | 0.2341 *** | 0.1036 *** | −0.0245 *** | −0.0113 *** |
| (0.0276) | (0.0189) | (0.0084) | (0.0018) | |
| Observations | 24,671 | 27,574 | 31,552 | 33,620 |
| R2 | 0.0007 | 0.0008 | 0.0005 | 0.0011 |
| Sample size | 2003 | 2003 | 2003 | 2003 |
| (1) | (2) | (3) | (4) | |
|---|---|---|---|---|
| Variable | Posting Microblogs | Reposting Microblogs | Posting Photos | Posting Geo-Tagged Microblogs |
| Launch of new function () | 0.1446 *** | 0.0812 ** | 0.0385 *** | −0.0158 *** |
| (0.0414) | (0.0349) | (0.0109) | (0.0026) | |
| Constant | 0.1832 *** | 0.0814 *** | −0.0350 *** | −0.0085 *** |
| (0.0229) | (0.0191) | (0.0091) | (0.0019) | |
| Observations | 24,671 | 27,574 | 31,552 | 33,620 |
| R2 | 0.0043 | 0.0020 | 0.0011 | 0.0013 |
| Sample size | 2003 | 2003 | 2003 | 2003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Huang, W.; Pan, X.; Xie, W. Will IP Location Openness Affect Posts?—An Empirical Examination from Sina Weibo. Information 2025, 16, 1107. https://doi.org/10.3390/info16121107
Wang Z, Huang W, Pan X, Xie W. Will IP Location Openness Affect Posts?—An Empirical Examination from Sina Weibo. Information. 2025; 16(12):1107. https://doi.org/10.3390/info16121107
Chicago/Turabian StyleWang, Zhong, Weili Huang, Xinxian Pan, and Weihong Xie. 2025. "Will IP Location Openness Affect Posts?—An Empirical Examination from Sina Weibo" Information 16, no. 12: 1107. https://doi.org/10.3390/info16121107
APA StyleWang, Z., Huang, W., Pan, X., & Xie, W. (2025). Will IP Location Openness Affect Posts?—An Empirical Examination from Sina Weibo. Information, 16(12), 1107. https://doi.org/10.3390/info16121107

