NE-DCHL: Nonlinear Enhanced Disentangled Contrastive Hypergraph Learning for Next Point-of-Interest Recommendation
Abstract
1. Introduction
- Nonlinear Hypergraph Enhancement: We enhance the expressive power of hypergraph convolutional layers by integrating ReLU activation, residual connections, and dropout regularization, thereby enabling more effective modeling of complex nonlinear user–POI relationships. Specifically, we apply ReLU in the HGCN layers to achieve more expressive propagation, while Sigmoid is used only in the user-view gating module to preserve negative values.
- KNN-based Geographic Sparsification: We employ a KNN-weighted adjacency matrix to sparsify POI relationships, significantly improving computational efficiency while maintaining spatial and semantic integrity.
- Adaptive Cross-View Contrastive Learning Module: We design an adaptive contrastive learning mechanism to strengthen multi-view collaboration through a GRACE-inspired batch-wise InfoNCE loss, enabling scalable and robust representation learning.
2. Related Work
2.1. Next POI Recommendation
2.2. Contrastive Learning
2.3. Geographic Location and Disentangled Representation Learning
3. Preliminary
3.1. Task Formulation
3.2. Hypergraph
4. Method
4.1. Multi-View Disentangled Hypergraph Learning
4.1.1. Construction of Multiview Disentangled Hypergraph
- Collaborative View Hypergraph
- 2.
- Transition View Hypergraph
- 3.
- Geographical View Hypergraph
4.1.2. Disentangled Hypergraph Convolutional Networks
- Collaborative Hypergraph Convolutional Network
- 2.
- Transition Hypergraph Convolutional Network
- 3.
- Geographic Hypergraph Convolutional Network
4.2. Adaptive Fusion of User Representations
4.3. Cross-View Contrastive Learning
4.4. Prediction and Optimization
5. Experiments
5.1. Experimental Setup
5.1.1. Datasets
5.1.2. Evaluation Metrics
5.1.3. Baseline Methods
- UserPop: Ranks the most popular POIs based on each user’s visit frequency.
- STGN [13]: An LSTM-based approach that models users’ long-term and short-term preferences through spatial and temporal gating mechanisms.
- LSTPM [12]: An LSTM-based model that integrates non-local networks and geographically extended LSTM to better capture users’ long-term and short-term interests.
- STAN [15]: A self-attention-based model that explicitly captures spatiotemporal influences in users’ check-in sequences.
- LightGCN [41]: A graph neural network (GNN)-based collaborative filtering model that removes nonlinear activation and feature transformation during propagation to improve computational efficiency.
- SGRec [18]: Employs a Seq2Graph enhancement strategy, leveraging GNNs to capture first-order neighbor collaborative signals.
- GETNext [42]: Combines a Transformer with GNNs to capture global transition patterns and collaborative signals for more accurate next POI prediction.
- MSTHN [2]: A multi-view spatiotemporal hypergraph network that jointly models the relationship between users and POIs from local and global perspectives, capturing high-order collaborative signals dependencies.
- STHGCN [21]: A spatiotemporal hypergraph convolutional network that integrates complex high-order information and global relationships across user trajectories.
- DisenPOI [31]: Disentangles sequential and geographical influences through graph-based decoupled contrastive learning.
- HCCF [32]: A hypergraph contrastive learning framework that captures local and global collaborative relationships through a cross-view learning architecture.
- DCHL [22]: A decoupled hypergraph contrastive learning model that explores multiple potential factors underlying user behavior via a multi-view design, and enhances user and POI representations across views through cross-view contrastive learning.
5.1.4. Parameter Settings
5.2. Experimental Results
5.3. Ablation Study
- (w/o C): Collaboration view not included;
- (w/o T): Transition view not included;
- (w/o G): Geographical view not included;
- (w/o R): Non-linear hypergraph convolution not included;
- (w/o K): KNN adjacency matrix sparsification strategy not included;
- (w/o CL): Scalable cross-view contrastive learning not included.
5.4. Hyperparameter Analysis
5.4.1. Impact of the Number of Layers
5.4.2. Impact of Temperature Parameters
5.4.3. Impact of k Value Selection
5.5. In-Depth Analysis of Computational Efficiency
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cho, E.; Myers, S.A.; Leskovec, J. Friendship and Mobility: User Movement in Location-Based Social Networks. In Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 21–24 August 2011; pp. 1082–1090. [Google Scholar] [CrossRef]
- Lai, Y.; Su, Y.; Wei, L.; Chen, G.; Wang, T.; Zha, D. Multi-view Spatial-Temporal Enhanced Hypergraph Network for Next POI Recommendation. In Proceedings of the Database Systems for Advanced Applications, DASFAA 2023, Tianjin, China, 17–20 April 2023; Springer: Cham, Switzerland, 2023; Volume 13944, pp. 237–252. [Google Scholar] [CrossRef]
- Lai, Y.; Su, Y.; Wei, L.; Wang, T.; Zha, D.; Wang, X. Adaptive Spatial-Temporal Hypergraph Fusion Learning for Next POI Recommendation. In Proceedings of the ICASSP 2024—2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Seoul, Republic of Korea, 14–19 April 2024; pp. 7320–7324. Available online: https://ieeexplore.ieee.org/document/10447357 (accessed on 25 April 2025).
- Rao, X.; Chen, L.; Liu, Y.; Shang, S.; Yao, B.; Han, P. Graph-Flashback Network for Next Location Recommendation. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD ’22), Washington, DC, USA, 14–18 August 2022; pp. 1463–1471. [Google Scholar] [CrossRef]
- Su, Y.; Li, X.; Tang, W.; Xiang, J.; He, Y. Next Check-in Location Prediction via Footprints and Friendship on Location-Based Social Networks. In Proceedings of the 2018 19th IEEE International Conference on Mobile Data Management (MDM), Aalborg, Denmark, 25–28 June 2018; pp. 251–256. Available online: https://ieeexplore.ieee.org/abstract/document/8411284 (accessed on 9 October 2025).
- Wang, T.; Lai, Y.; Chen, G.; Wang, R.; Shen, J.; Xiang, J. A Dynamic-Aware Heterogeneous Graph Neural Network for Next POI Recommendation. In Proceedings of the PRICAI 2023: Trends in Artificial Intelligence, Jakarta, Indonesia, 15–19 November 2023; Springer: Singapore, 2023; Volume 14325, pp. 313–326. [Google Scholar] [CrossRef]
- Wang, Z.; Zhu, Y.; Liu, H.; Wang, C. Learning Graph-Based Disentangled Representations for Next POI Recommendation. In Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’22), Madrid, Spain, 11–15 July 2022; pp. 1154–1163. [Google Scholar] [CrossRef]
- Cheng, C.; Yang, H.; Lyu, M.R.; King, I. Where You Like to Go Next: Successive Point-of-Interest Recommendation. In Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence (IJCAI ’13), Beijing, China, 3–9 August 2013; pp. 2605–2611. [Google Scholar]
- Rendle, S.; Freudenthaler, C.; Schmidt-Thieme, L. Factorizing Personalized Markov Chains for Next-Basket Recommendation. In Proceedings of the 19th International Conference on World Wide Web (WWW ’10), Raleigh, NC, USA, 26–30 April 2010; pp. 811–820. [Google Scholar] [CrossRef]
- Feng, J.; Li, Y.; Zhang, C.; Sun, F.; Meng, F.; Guo, A.; Jin, D. DeepMove: Predicting Human Mobility with Attentional Recurrent Networks. In Proceedings of the 2018 World Wide Web Conference (WWW ’18), International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, Geneva, Switzerland, 23–27 April 2018; pp. 1459–1468. [Google Scholar] [CrossRef]
- Liu, Q.; Wu, S.; Wang, L.; Tan, T. Predicting the Next Location: A Recurrent Model with Spatial and Temporal Contexts. In Proceedings of the AAAI Conference on Artificial Intelligence, Phoenix, AZ, USA, 12–17 February 2016; Volume 30. [Google Scholar] [CrossRef]
- Sun, K.; Qian, T.; Chen, T.; Liang, Y.; Nguyen, Q.V.H.; Yin, H. Where to Go Next: Modeling Long-and Short-Term User Preferences for Point-of-Interest Recommendation. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 214–221. [Google Scholar] [CrossRef]
- Zhao, P.; Luo, A.; Liu, Y.; Zhuang, F.; Xu, J.; Li, Z.; Sheng, V.S.; Zhou, X. Where to Go Next: A Spatio-Temporal Gated Network for Next POI Recommendation. IEEE Trans. Knowl. Data Eng. 2020, 34, 2512–2524. [Google Scholar] [CrossRef]
- Lian, D.; Wu, Y.; Ge, Y.; Xie, X.; Chen, E. Geography-Aware Sequential Location Recommendation. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD ’20), Virtual Event, 6–10 July 2020; pp. 2009–2019. [Google Scholar] [CrossRef]
- Luo, Y.; Liu, Q.; Liu, Z. Stan: Spatio-Temporal Attention Network for Next Location Recommendation. In Proceedings of the Web Conference 2021 (WWW ’21), Ljubljana, Slovenia, 19–23 April 2021; pp. 2177–2185. [Google Scholar] [CrossRef]
- Dang, W.; Wang, H.; Pan, S.; Zhang, P.; Zhou, C.; Chen, X.; Wang, J. Predicting Human Mobility via Graph Convolutional Dual-Attentive Networks. In Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining (WSDM ’22), Virtual Event, 21–25 February 2022; pp. 192–200. [Google Scholar] [CrossRef]
- Huang, Z.; Ma, J.; Dong, Y.; Foutz, N.Z.; Li, J. Empowering Next POI Recommendation with Multi-Relational Modeling. In Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’22), Madrid, Spain, 11–15 July 2022; pp. 2034–2038. [Google Scholar] [CrossRef]
- Li, Y.; Chen, T.; Luo, Y.; Yin, H.; Huang, Z. Discovering Collaborative Signals for Next POI Recommendation with Iterative Seq2Graph Augmentation. In Proceedings of the 30th IJCAI, Montreal, QC, Canada, 19–27 August 2021; pp. 1491–1497. [Google Scholar] [CrossRef]
- Lim, N.; Hooi, B.; Ng, S.K.; Goh, Y.L.; Weng, R.; Tan, R. Hierarchical Multi-Task Graph Recurrent Network for Next POI Recommendation. In Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’22), Madrid, Spain, 11–15 July 2022; pp. 1133–1143. [Google Scholar] [CrossRef]
- Li, Z.; Cheng, W.; Xiao, H.; Yu, W.; Chen, H.; Wang, W. You Are What and Where You Are: Graph Enhanced Attention Network for Explainable POI Recommendation. In Proceedings of the 30th ACM International Conference on Information & Knowledge Management (CIKM ’21), Gold Coast, QLD, Australia, 1–5 November 2021; pp. 3945–3954. [Google Scholar] [CrossRef]
- Yan, X.; Song, T.; Jiao, Y.; He, J.; Wang, J.; Li, R.; Chu, W. Spatio-Temporal Hypergraph Learning for Next POI Recommendation. In Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’23), Taipei, Taiwan, 23–27 July 2023; pp. 403–412. [Google Scholar] [CrossRef]
- Lai, Y.; Su, Y.; Wei, L.; He, T.; Wang, H.; Chen, G.; Zha, D.; Liu, Q.; Wang, X. Disentangled Contrastive Hypergraph Learning for Next POI Recommendation. In Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’24), Washington, DC, USA, 14–18 July 2024; pp. 1452–1462. [Google Scholar] [CrossRef]
- Rahmani, H.A.; Aliannejadi, M.; Baratchi, M.; Crestani, F. A Systematic Analysis on the Impact of Contextual Information on Point-of-Interest Recommendation. ACM Trans. Inf. Syst. 2022, 40, 1–35. [Google Scholar] [CrossRef]
- Han, H.; Zhang, M.; Hou, M.; Zhang, F.; Wang, Z.; Chen, E.; Wang, H.; Ma, J.; Liu, Q. STGCN: A Spatial-Temporal Aware Graph Learning Method for POI Recommendation. In Proceedings of the 2020 IEEE International Conference on Data Mining (ICDM), Sorrento, Italy, 17–20 November 2020; pp. 1052–1057. Available online: https://ieeexplore.ieee.org/abstract/document/9338281 (accessed on 20 March 2025).
- Xie, M.; Yin, H.; Wang, H.; Xu, F.; Chen, W.; Wang, S. Learning Graph-Based POI Embedding for Location-Based Recommendation. In Proceedings of the 25th ACM International on Conference on Information and Knowledge Management (CIKM ’16), Indianapolis, IN, USA, 24–28 October 2016; pp. 15–24. [Google Scholar] [CrossRef]
- Zhang, J.; Zhu, Y.; Liu, Q.; Wu, S.; Wang, S.; Wang, L. Mining Latent Structures for Multimedia Recommendation. In Proceedings of the 29th ACM International Conference on Multimedia (MM ’21), Virtual Event, 20–24 October 2021; pp. 3872–3880. [Google Scholar] [CrossRef]
- van den Oord, A.; Li, Y.; Vinyals, O. Representation Learning with Contrastive Predictive Coding. arXiv 2019, arXiv:1807.03748. [Google Scholar] [CrossRef]
- Zhu, Y.; Xu, Y.; Yu, F.; Liu, Q.; Wu, S.; Wang, L. Deep Graph Contrastive Representation Learning. arXiv 2020, arXiv:2006.04131. [Google Scholar] [CrossRef]
- Cho, K.; van Merrienboer, B.; Gülçehre, Ç.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning Phrase Representations Using RNN Encoder-Decoder for Statistical Machine Translation. arXiv 2014, arXiv:1406.1078. [Google Scholar] [CrossRef]
- Feng, Y.; You, H.; Zhang, Z.; Ji, R.; Gao, Y. Hypergraph Neural Networks. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; Volume 33, pp. 3558–3565. [Google Scholar] [CrossRef]
- Qin, Y.; Wang, Y.; Sun, F.; Ju, W.; Hou, X.; Wang, Z.; Cheng, J.; Lei, J.; Zhang, M. DisenPOI: Disentangling Sequential and Geographical Influence for Point-of-Interest Recommendation. In Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining (WSDM ’23), Singapore, 27 February–3 March 2023; pp. 508–516. [Google Scholar] [CrossRef]
- Xia, L.; Huang, C.; Xu, Y.; Zhao, J.; Yin, D.; Huang, J. Hypergraph Contrastive Collaborative Filtering. In Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’22), Madrid, Spain, 11–15 July 2022; pp. 70–79. [Google Scholar] [CrossRef]
- Chopde, N.R.; Nichat, M. Landmark Based Shortest Path Detection by Using A* and Haversine Formula. Int. J. Innov. Res. Comput. Commun. Eng. 2013, 1, 298–302. [Google Scholar]
- Wang, Z.; Zhu, Y.; Zhang, Q.; Liu, H.; Wang, C.; Liu, T. Graph-Enhanced Spatial-Temporal Network for Next POI Recommendation. ACM Trans. Knowl. Discov. Data 2022, 16, 1–21. [Google Scholar] [CrossRef]
- Benson, A.R.; Gleich, D.F.; Leskovec, J. Higher-Order Organization of Complex Networks. Science 2016, 353, 163–166. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Gao, C.; Yao, Q.; Li, T.; Jin, D.; Li, Y. DisenHCN: Disentangled Hypergraph Convolutional Networks for Spatiotemporal Activity Prediction. arXiv 2022, arXiv:2208.06794. [Google Scholar] [CrossRef]
- Qin, Y.; Gao, C.; Wang, Y.; Wei, S.; Jin, D.; Yuan, J.; Zhang, L. Disentangling Geographical Effect for Point-of-Interest Recommendation. IEEE Trans. Knowl. Data Eng. 2022, 35, 7883–7897. [Google Scholar] [CrossRef]
- Bai, S.; Zhang, F.; Torr, P.H.S. Hypergraph Convolution and Hypergraph Attention. Pattern Recognit. 2021, 110, 107637. [Google Scholar] [CrossRef]
- Gao, Y.; Feng, Y.; Ji, S.; Ji, R. HGNN+: General Hypergraph Neural Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 3181–3199. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Zhang, D.; Zheng, V.W.; Yu, Z. Modeling User Activity Preference by Leveraging User Spatial Temporal Characteristics in LBSNs. IEEE Trans. Syst. Man Cybern. Syst. 2014, 45, 129–142. [Google Scholar] [CrossRef]
- He, X.; Deng, K.; Wang, X.; Li, Y.; Zhang, Y.; Wang, M. LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’20), Virtual Event, 25–30 July 2020; pp. 639–648. [Google Scholar] [CrossRef]
- Yang, S.; Liu, J.; Zhao, K. GETNext: Trajectory Flow Map Enhanced Transformer for Next POI Recommendation. In Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’22), Madrid, Spain, 11–15 July 2022; pp. 1144–1153. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]





| #User | #POIs | #Check-ins | #Sessions | #Sparsity | |
|---|---|---|---|---|---|
| NYC | 834 | 3835 | 44,686 | 8841 | 98.61% |
| TKY | 2173 | 7038 | 308,566 | 41,307 | 97.82% |
| Method | NYC | TKY | ||||||
|---|---|---|---|---|---|---|---|---|
| R@5 | R@10 | N@5 | N@10 | R@5 | R@10 | N@5 | N@10 | |
| UserPop | 0.2866 | 0.3297 | 0.2283 | 0.2423 | 0.2229 | 0.2668 | 0.1718 | 0.1861 |
| STGN | 0.2371 | 0.2594 | 0.2261 | 0.2307 | 0.2112 | 0.2587 | 0.1482 | 0.1589 |
| LSTPM | 0.2495 | 0.2668 | 0.2425 | 0.2483 | 0.2203 | 0.2703 | 0.1556 | 0.1734 |
| STAN | 0.3523 | 0.3827 | 0.3025 | 0.3137 | 0.2621 | 0.3317 | 0.2074 | 0.2189 |
| LightGCN | 0.3221 | 0.3488 | 0.2958 | 0.3042 | 0.2213 | 0.2594 | 0.1977 | 0.2098 |
| SGRec | 0.3451 | 0.3723 | 0.3052 | 0.3178 | 0.2537 | 0.3213 | 0.2221 | 0.2447 |
| GETNext | 0.3572 | 0.3866 | 0.3079 | 0.3094 | 0.2686 | 0.3282 | 0.2212 | 0.2242 |
| MSTHN | 0.4076 | 0.4398 | 0.3612 | 0.3702 | 0.3378 | 0.3927 | 0.2567 | 0.2721 |
| STHGCN | 0.4081 | 0.4366 | 0.3626 | 0.3703 | 0.3392 | 0.3924 | 0.2592 | 0.2693 |
| DisenPOI | 0.3577 | 0.3831 | 0.2979 | 0.3071 | 0.2692 | 0.3314 | 0.2263 | 0.2322 |
| HCCF | 0.3534 | 0.3745 | 0.3025 | 0.3134 | 0.2689 | 0.3253 | 0.2325 | 0.2429 |
| DCHL | 0.4385 | 0.4861 | 0.3859 | 0.4017 | 0.3662 | 0.4083 | 0.2951 | 0.3078 |
| Ours | 0.4469 | 0.5027 | 0.3978 | 0.4165 | 0.3702 | 0.4180 | 0.2975 | 0.3132 |
| ±0.0068 | ±0.0073 | ±0.0057 | ±0.0058 | ±0.0035 | ±0.0066 | ±0.0017 | ±0.0013 | |
| Method | NYC | TKY | ||
|---|---|---|---|---|
| R@10 | N@10 | R@10 | N@10 | |
| w/o C | 0.4572 (±0.0087) | 0.3817 (±0.005) | 0.3999 (±0.0046) | 0.2993 (±0.0044) |
| w/o T | 0.4675 (±0.0071) | 0.3928 (±0.0053) | 0.4100 (±0.0047) | 0.3113 (±0.0068) |
| w/o G | 0.4809 (±0.0064) | 0.4026 (±0.0046) | 0.3953 (±0.0058) | 0.2920 (±0.0025) |
| w/o R | 0.4902 (±0.0062) | 0.4070 (±0.0047) | 0.4056 (±0.0031) | 0.2980 (±0.0029) |
| w/o K | 0.4932 (±0.0061) | 0.4117 (±0.0053) | 0.4028 (±0.0064) | 0.2953 (±0.0038) |
| w/o CL | 0.4705 (±0.003) | 0.3922 (±0.0045) | 0.4063 (±0.004) | 0.2993 (±0.0024) |
| All | 0.5027 | 0.4165 | 0.4180 | 0.3132 |
| Method | DCHL (s) | Ours (s) | Performance Improvement (%) |
|---|---|---|---|
| NYC | 0.2995 | 0.0010 | 99.67 |
| TKY | 0.3408 | 0.0018 | 99.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Wang, G.; Yan, X. NE-DCHL: Nonlinear Enhanced Disentangled Contrastive Hypergraph Learning for Next Point-of-Interest Recommendation. Information 2025, 16, 1086. https://doi.org/10.3390/info16121086
Zhang H, Wang G, Yan X. NE-DCHL: Nonlinear Enhanced Disentangled Contrastive Hypergraph Learning for Next Point-of-Interest Recommendation. Information. 2025; 16(12):1086. https://doi.org/10.3390/info16121086
Chicago/Turabian StyleZhang, Hongwei, Guolong Wang, and Xiaofeng Yan. 2025. "NE-DCHL: Nonlinear Enhanced Disentangled Contrastive Hypergraph Learning for Next Point-of-Interest Recommendation" Information 16, no. 12: 1086. https://doi.org/10.3390/info16121086
APA StyleZhang, H., Wang, G., & Yan, X. (2025). NE-DCHL: Nonlinear Enhanced Disentangled Contrastive Hypergraph Learning for Next Point-of-Interest Recommendation. Information, 16(12), 1086. https://doi.org/10.3390/info16121086
