Measuring Narrative Complexity Among Suicide Deaths in the National Violent Death Reporting System (2003–2021 NVDRS)
Abstract
1. Introduction
2. Materials & Methods
2.1. Data Source
2.2. Study Measures
2.3. Data Analysis
3. Results
3.1. Characteristics of the Sample
3.2. Developing Measures of Narrative Complexity
3.3. Associations with Indicators of Informational Need
3.4. Predictors of Narrative Length
3.5. Predictors of Narrative Complexity
4. Discussion
Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Centers for Disease Control and Prevention. National Center for Health Statistics. National Vital Statistics System, Provisional Mortality on CDC WONDER Online Database. 2025. Available online: http://wonder.cdc.gov/mcd-icd10-provisional.html (accessed on 29 May 2025).
- Strassle, P.D.; Kendrick, P.; Baumann, M.M.; Kelly, Y.O.; Li, Z.; Schmidt, C.; Sylte, D.O.; Compton, K.; Bertolacci, G.J.; La Motte-Kerr, W.; et al. Homicide Rates Across County, Race, Ethnicity, Age, and Sex in the US: A Global Burden of Disease Study. JAMA Netw. Open 2025, 8, e2462069. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. About the National Violent Death Reporting System (NVDRS). 2025. Available online: https://www.cdc.gov/nvdrs/about/index.html (accessed on 29 September 2025).
- Nguyen, B.L. Surveillance for Violent Deaths — National Violent Death Reporting System, 48 States, the District of Columbia, and Puerto Rico, 2021. MMWR. Surveill. Summ. 2024, 73, 1–44. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention, National Center for Injury Prevention and Control. National Violent Death Reporting System Web Coding Manual Version 6.1. 2025. Available online: https://www.cdc.gov/nvdrs/media/pdfs/2025/03/NVDRS-Coding-Manual-Version-6.1_508.pdf (accessed on 28 April 2025).
- Centers for Disease Control and Prevention. National Violent Death Reporting System Coding Manual Version 2. 2003. Available online: https://www.reginfo.gov/public/do/DownloadDocument?objectID=963701 (accessed on 29 September 2025).
- Mezuk, B.; Kalesnikava, V.A.; Kim, J.; Ko, T.M.; Collins, C. Not Discussed: Inequalities in Narrative Text Data for Suicide Deaths in the National Violent Death Reporting System. PLoS ONE 2021, 16, e0254417. [Google Scholar] [CrossRef]
- Arseniev-Koehler, A.; Foster, J.G.; Mays, V.M.; Chang, K.W.; Cochran, S.D. Aggression, Escalation, and Other Latent Themes in Legal Intervention Deaths of Non-Hispanic Black and White Men: Results from the 2003–2017 National Violent Death Reporting System. Am. J. Public Health 2021, 111, S107–S115. [Google Scholar] [CrossRef]
- Arseniev-Koehler, A.; Mays, V.M.; Foster, J.G.; Chang, K.W.; Cochran, S.D. Gendered Patterns in Manifest and Latent Mental Health Indicators Among Suicide Decedents: 2003–2020 National Violent Death Reporting System (NVDRS). Am. J. Public Health 2023, 114, S268–S277. [Google Scholar] [CrossRef]
- Parker, S.T. Supervised Natural Language Processing Classification of Violent Death Narratives: Development and Assessment of a Compact Large Language Model. JMIR AI 2025, 4, e68212. [Google Scholar] [CrossRef]
- Kawar, K.; Saiegh-Haddad, E.; Armon-Lotem, S. Text Complexity and Variety Factors in Narrative Retelling and Narrative Comprehension Among Arabic-speaking Preschool Children. First Lang. 2023, 43, 355–379. [Google Scholar] [CrossRef]
- Shi, Y.; Lei, L. Lexical Richness and Text Length: An Entropy-based Perspective. J. Quant. Linguist. 2022, 29, 62–79. [Google Scholar] [CrossRef]
- Kobrin, J.L.; Deng, H.; Shaw, E.J. Does Quantity Equal Quality? The Relationship between Length of Response and Scores on the SAT Essay. J. Appl. Test. Technol. 2014, 8, 1–15. [Google Scholar]
- Wang, Y.; Buschmeier, H. Revisiting the Phenomenon of Syntactic Complexity Convergence on German Dialogue Data. arXiv 2024, arXiv:2408.12177. [Google Scholar] [CrossRef]
- Jing, Y.; Liu, H. Mean Hierarchical Distance Augmenting Mean Dependency Distance. In Proceedings of the Third International Conference on Dependency Linguistics (Depling 2015), Uppsala, Sweden, 24–26 August 2015; Nivre, J., Hajičová, E., Eds.; Uppsala University: Uppsala, Sweden, 2015; pp. 161–170. Available online: https://aclanthology.org/W15-2119/ (accessed on 29 September 2025).
- Gao, N.; He, Q. A Dependency Distance Approach to the Syntactic Complexity Variation in the Connected Speech of Alzheimer’s Disease. Humanit. Soc. Sci. Commun. 2024, 11, 1–12. [Google Scholar] [CrossRef]
- Liu, H. Dependency Distance as a Metric of Language Comprehension Difficulty. J. Cogn. Sci. 2008, 9, 159–191. [Google Scholar] [CrossRef]
- Oya, M. Syntactic Dependency Distance as Sentence Complexity Measure. In Proceedings of the 16th International Conference of Pan-Pacific Association of Applied Linguistics, Hong Kong, China, 8–10 August 2011; Volume 1. Available online: https://www.paaljapan.org/conference2011/ProcNewest2011/pdf/poster/P-13.pdf (accessed on 29 September 2025).
- McNamara, D.S.; Crossley, S.A.; McCarthy, P.M. Linguistic Features of Writing Quality. Writ. Commun. 2010, 27, 57–86. [Google Scholar] [CrossRef]
- Norris, J.M.; Ortega, L. Towards an Organic Approach to Investigating CAF in Instructed SLA: The Case of Complexity. Appl. Linguist. 2009, 30, 555–578. [Google Scholar] [CrossRef]
- Ali, B.; Rockett, I.; Miller, T. Variable Circumstances of Suicide Among Racial/Ethnic Groups by Sex and Age: A National Violent-Death Reporting System Analysis. Arch. Suicide Res. 2021, 25, 94–106. [Google Scholar] [CrossRef] [PubMed]
- Nivre, J. Dependency Parsing. Lang. Linguist. Compass 2010, 4, 138–152. [Google Scholar] [CrossRef]
- Liu, H.; Xu, C.; Liang, J. Dependency distance: A New Perspective on Syntactic Patterns in Natural Languages. Phys. Life Rev. 2017, 21, 171–193. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, J.; Jiang, J.; Liu, H. Dependency Distance Measures in Assessing L2 Writing Proficiency. Assess. Writ. 2022, 51, 100603. [Google Scholar] [CrossRef]
- Explosion. spaCy: Industrial-Strength Natural Language Processing in Python. 2025. Available online: https://spacy.io/ (accessed on 29 September 2025).
- StataCorp. Stata Statistical Software: Release 19.0; StataCorp LLC.: College Station, TX, USA, 2025. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Osborne, J. Improving Your Data Transformations: Applying the Box-Cox Transformation. Pract. Assess. Res. Eval. 2010, 15, 12. [Google Scholar] [CrossRef]
- Khurana, D.; Koli, A.; Khatter, K.; Singh, S. Natural Language Processing: State of the Art, Current Trends and Challenges. Multimed. Tools Appl. 2023, 82, 3713–3744. [Google Scholar] [CrossRef]
- Burke, H.B.; Hoang, A.; Becher, D.; Fontelo, P.; Liu, F.; Stephens, M.; Pangaro, L.N.; Sessums, L.L.; O’Malley, P.; Baxi, N.S.; et al. QNOTE: An Instrument for Measuring the Quality of EHR Clinical Notes. J. Am. Med. Informatics Assoc. 2014, 21, 910–916. [Google Scholar] [CrossRef]
- Stetson, P.D.; Morrison, F.P.; Bakken, S.; Johnson, S.B.; eNote Research Team. Preliminary Development of the Physician Documentation Quality Instrument. J. Am. Med Inform. Assoc. 2008, 15, 534–541. [Google Scholar] [CrossRef]
- Stetson, P.D.; Bakken, S.; Wrenn, J.O.; Siegler, E.L. Assessing Electronic Note Quality Using the Physician Documentation Quality Instrument (PDQI-9). Appl. Clin. Inform. 2012, 3, 164–174. [Google Scholar] [CrossRef]
- Feldman, J.; Goodman, A.; Hochman, K.; Chakravartty, E.; Austrian, J.; Iturrate, E.; Bosworth, B.; Saxena, A.; Moussa, M.; Chenouda, D.; et al. Novel Note Templates to Enhance Signal and Reduce Noise in Medical Documentation: Prospective Improvement Study. JMIR Form. Res. 2023, 7, e41223. [Google Scholar] [CrossRef]
- Roman, J.K.; Cook, P. Studying Firearm Fatalities Using the NVDRS. In Improving Data Infrastructure to Reduce Firearms Violence; NORC at the University of Chicago: Chicago, IL, USA, 2021; Chapter 4; pp. 81–100. Available online: https://www.norc.org/content/dam/norc-org/pdfs/Improving%20Data%20Infrastructure%20to%20Reduce%20Firearms%20Violence_Chapter%204.pdf (accessed on 29 September 2025).
- Bommersbach, T.J.; Rosenheck, R.A.; Rhee, T.G. Racial and ethnic differences in suicidal behavior and mental health service use among US adults, 2009–2020. Psychol. Med. 2023, 53, 5592–5602. [Google Scholar] [CrossRef] [PubMed]
- Mercy, J.A.; Barker, L.; Frazier, L. The Secrets of the National Violent Death Reporting System. Inj. Prev. 2006, 12, ii1–ii2. [Google Scholar] [CrossRef]
- Wang, Y.; Boyd, A.E.; Rountree, L.; Ren, Y.; Nyhan, K.; Nagar, R.; Higginbottom, J.; Ranney, M.L.; Parikh, H.; Mukherjee, B. Towards Enhancing Data Equity in Public Health Data Science. arXiv 2025, arXiv:2508.20301. [Google Scholar] [CrossRef]
- Arseniev-Koehler, A.; Cochran, S.D.; Mays, V.M.; Chang, K.W.; Foster, J.G. Integrating Topic Modeling and Word Embedding to Characterize Violent Deaths. Proc. Natl. Acad. Sci. USA 2022, 119, e2108801119. [Google Scholar] [CrossRef]
- Phillips, J.A.; Davidson, T.R.; Baffoe-Bonnie, M.S. Identifying Latent Themes in Suicide Among Black and White Adolescents and Young Adults Using the National Violent Death Reporting System, 2013–2019. Soc. Sci. Med. 2023, 334, 116144. [Google Scholar] [CrossRef]
- Dang, L.N.; Kahsay, E.T.; James, L.N.; Johns, L.J.; Rios, I.E.; Mezuk, B. Research Utility and Limitations of Textual Data in the National Violent Death Reporting System: A Scoping Review and Recommendations. Inj. Epidemiol. 2023, 10, 23. [Google Scholar] [CrossRef]
- Zhang, B. Getting to Know Named Entity Recognition: Better Information Retrieval. Med Ref. Serv. Q. 2024, 43, 196–202. [Google Scholar] [CrossRef] [PubMed]
- Uppunda, A.; Cochran, S.D.; Foster, J.G.; Arseniev-Koehler, A.; Mays, V.M.; Chang, K.W. Adapting Coreference Resolution for Processing Violent Death Narratives. arXiv 2021, arXiv:2104.14703. [Google Scholar] [CrossRef]
- Han, S.; Kim, B.; Chang, B. Measuring and Improving Semantic Diversity of Dialogue Generation. In Proceedings of the Findings of the Association for Computational Linguistics: EMNLP 2022, Abu Dhabi, United Arab Emirates, 7–11 December 2022; Goldberg, Y., Kozareva, Z., Zhang, Y., Eds.; Association for Computational Linguistics: Stroudsburg, PA, USA, 2022; pp. 934–950. [Google Scholar] [CrossRef]
- Johns, B.T.; Jones, M.N. Content Matters: Measures of Contextual Diversity Must Consider Semantic Content. J. Mem. Lang. 2022, 123, 104313. [Google Scholar] [CrossRef]
- Daraz, L.; Morrow, A.S.; Ponce, O.J.; Farah, W.; Katabi, A.; Majzoub, A.; Seisa, M.O.; Benkhadra, R.; Alsawas, M.; Larry, P.; et al. Readability of Online Health Information: A Meta-Narrative Systematic Review. Am. J. Med Qual. 2018, 33, 487–492. [Google Scholar] [CrossRef]
- Crossley, S.A. Developing Linguistic Constructs of Text Readability Using Natural Language Processing. Sci. Stud. Read. 2025, 29, 138–160. [Google Scholar] [CrossRef]
- Scarpino, I.; Zucco, C.; Vallelunga, R.; Luzza, F.; Cannataro, M. Investigating Topic Modeling Techniques to Extract Meaningful Insights in Italian Long COVID Narration. BioTech 2022, 11, 41. [Google Scholar] [CrossRef]
- Schlachter, J.; Ruvinsky, A.; Reynoso, L.A.; Muthiah, S.; Ramakrishnan, N. Leveraging Topic Models to Develop Metrics for Evaluating the Quality of Narrative Threads Extracted from News Stories. Procedia Manuf. 2015, 3, 4028–4035. [Google Scholar] [CrossRef]
- Deutsch, D.; Bedrax-Weiss, T.; Roth, D. Towards Question-Answering as an Automatic Metric for Evaluating the Content Quality of a Summary. Trans. Assoc. Comput. Linguist. 2021, 9, 774–789. [Google Scholar] [CrossRef]
- Narayan, S.; Cohen, S.B.; Lapata, M. Ranking Sentences for Extractive Summarization with Reinforcement Learning. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), New Orleans, Louisiana, 1–6 June 2018; Walker, M., Ji, H., Stent, A., Eds.; Association for Computational Linguistics: Stroudsburg, PA, USA, 2018; pp. 1747–1759. [Google Scholar] [CrossRef]
- Wang, A.; Cho, K.; Lewis, M. Asking and Answering Questions to Evaluate the Factual Consistency of Summaries. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Online, 5–10 July 2020; Jurafsky, D., Chai, J., Schluter, N., Tetreault, J., Eds.; Association for Computational Linguistics: Stroudsburg, PA, USA, 2020; pp. 5008–5020. [Google Scholar] [CrossRef]

| Coroner/Medical Examiner Narrative | Law Enforcement Narrative | |||
|---|---|---|---|---|
| Characteristics | N | % | N | % |
| 289,640 | 238,564 | |||
| Decedent Characteristics | ||||
| Race/Ethnicity | ||||
| American Indian/Alaska Native, Non-Hispanic | 3596 | 1.2 | 2921 | 1.2 |
| Asian/Pacific Islander, Non-Hispanic | 6864 | 2.4 | 4993 | 2.1 |
| Black or African American, Non-Hispanic | 17,936 | 6.2 | 13,919 | 5.8 |
| Hispanic | 18,236 | 6.3 | 13,438 | 5.6 |
| Other or unknown race, Non-Hispanic | 4169 | 1.4 | 3533 | 1.5 |
| White, Non-Hispanic | 238,839 | 82.5 | 199,760 | 83.7 |
| Sex | ||||
| Female | 65,430 | 22.6 | 52,371 | 22.0 |
| Male | 224,210 | 77.4 | 186,193 | 78.0 |
| Age in Years | ||||
| 12–17 | 9542 | 3.3 | 8013 | 3.4 |
| 18–24 | 30,283 | 10.5 | 25,171 | 10.6 |
| 25—44 | 97,455 | 33.6 | 80,213 | 33.6 |
| 45–64 | 102,846 | 35.5 | 84,746 | 35.5 |
| 65+ | 49,514 | 17.1 | 40,421 | 16.9 |
| Sexual Orientation and/or Gender Minority Status | ||||
| Heterosexual | 31,309 | 10.8 | 28,300 | 11.9 |
| Lesbian, Gay, Bisexual, Transgender, Queer, Sexual Minority | 2172 | 0.7 | 1889 | 0.8 |
| Unknown | 256,159 | 88.4 | 208,375 | 87.3 |
| Marital Status | ||||
| Divorced/Separated | 69,167 | 23.9 | 57,576 | 24.1 |
| Single/Never Married | 108,348 | 37.4 | 88,646 | 37.2 |
| Widowed | 16,400 | 5.7 | 13,272 | 5.6 |
| Unknown | 2743 | 0.9 | 2151 | 0.9 |
| Married/In Relationship | 92,982 | 32.1 | 76,919 | 32.2 |
| Educational Attainment | ||||
| More than high school graduate | 102,817 | 35.5 | 84,242 | 35.3 |
| Unknown | 50,800 | 17.5 | 41,793 | 17.5 |
| High school graduate or less | 136,023 | 47.0 | 112,529 | 47.2 |
| Military Veteran | ||||
| No | 228,127 | 78.8 | 187,747 | 78.7 |
| Yes | 48,281 | 16.7 | 40,882 | 17.1 |
| Unknown | 13,232 | 4.6 | 9935 | 4.2 |
| Unhoused | ||||
| No | 280,053 | 96.7 | 231,445 | 97.0 |
| Yes | 3709 | 1.3 | 3026 | 1.3 |
| Unknown | 5878 | 2.0 | 4093 | 1.7 |
| Incident Characteristics of Death | ||||
| Type of Weapon Used | ||||
| Hanging, strangulation, suffocation | 80,607 | 27.8 | 66,088 | 27.7 |
| Poisoning | 43,877 | 15.1 | 33,462 | 14.0 |
| Other | 21,571 | 7.4 | 16,669 | 7.0 |
| Firearm | 143,585 | 49.6 | 122,345 | 51.3 |
| Incident Characteristics of Death | ||||
| Location of Death | ||||
| Hospice or Long-term Care | 1893 | 0.7 | 960 | 0.4 |
| Hospital | 20,629 | 7.1 | 14,914 | 6.3 |
| Other | 93,082 | 32.1 | 76,255 | 32.0 |
| Unknown | 769 | 0.3 | 672 | 0.3 |
| Home | 173,267 | 59.8 | 145,763 | 61.1 |
| Toxicology Report Present | ||||
| Yes | 229,717 | 79.3 | 186,714 | 78.3 |
| No | 59,923 | 20.7 | 51,850 | 21.7 |
| Autopsy Performed | ||||
| No | 140,951 | 48.7 | 116,492 | 48.8 |
| Yes | 146,850 | 50.7 | 120,658 | 50.6 |
| Unknown | 1839 | 0.6 | 1414 | 0.6 |
| Census Division | ||||
| EN Central | 47,922 | 16.5 | 43,915 | 18.4 |
| ES Central | 12,548 | 4.3 | 6759 | 2.8 |
| Middle Atlantic | 24,879 | 8.6 | 14,223 | 6.0 |
| Mountain | 45,610 | 15.7 | 39,094 | 16.4 |
| New England | 18,961 | 6.5 | 16,985 | 7.1 |
| S Atlantic | 75,866 | 26.2 | 63,184 | 26.5 |
| WN Central | 15,259 | 5.3 | 14,800 | 6.2 |
| WS Central | 16,621 | 5.7 | 14,757 | 6.2 |
| Pacific | 31,974 | 11.0 | 24,847 | 10.4 |
| Year of Death | ||||
| Late (2017–2021) | 145,497 | 50.2 | 116,052 | 48.6 |
| Mid (2006–2016) | 126,939 | 43.8 | 109,138 | 45.7 |
| Early (2003–2005) | 17,204 | 5.9 | 13,374 | 5.6 |
| Number of Crises in Record | ||||
| More than one | 15,562 | 5.4 | 14,060 | 5.9 |
| One | 69,780 | 24.1 | 61,186 | 25.6 |
| None | 204,298 | 70.5 | 163,318 | 68.5 |
| Number of Licit and Illicit Substances in Record | ||||
| More than one | 88,452 | 30.5 | 69,225 | 29.0 |
| One | 52,081 | 18.0 | 42,340 | 17.7 |
| None | 149,107 | 51.5 | 126,999 | 53.2 |
| Coroner/Medical Examiner Narrative | Law Enforcement Narrative | |
|---|---|---|
| Measures | Mean [Q1–Q3] (Min–Max) | Mean [Q1–Q3] (Min–Max) |
| Word Count | 129.56 [71.00–163.00] (20.00–1953.00) | 145.47 [75.00–184.00] (20.00–2383.00) |
| Sentence Count | 10.06 [7.00–12.00] (1.00–239.00) | 10.35 [6.00–13.00] (1.00–128.00) |
| Max Depth | 7.69 [6.00–9.00] (3.00–28.00) | 8.02 [7.00–9.00] (2.00–37.00) |
| Complexity Score | 154.74 [87.24–193.72] (24.54–2268.46) | 170.89 [90.07–215.05] (25.12–2689.55) |
| Indicators of Informational Need | Coroner/Medical Examiner Narrative | Law Enforcement Narrative |
|---|---|---|
| Number of crises in record | ||
| More than one, n (%) | 15,562 (5.4) | 14,060 (5.9) |
| One, n (%) | 69,780 (24.1) | 61,186 (25.6) |
| None, n (%) | 204,298 (70.5) | 163,318 (68.5) |
| Correlations with number of crises | ||
| Word Count | 0.14 * | 0.16 * |
| Sentence Count | 0.12 * | 0.15 * |
| Max Depth | 0.07 * | 0.08 * |
| Complexity Score | 0.14 * | 0.16 * |
| Number of licit and illicit substances in record | ||
| More than one, n (%) | 88,452 (30.5) | 69,225 (29.0) |
| One, n (%) | 52,081 (18.0) | 42,340 (17.7) |
| None, n (%) | 149,107 (51.5) | 126,999 (53.2) |
| Correlations with number of substances | ||
| Word Count | 0.21 * | 0.15 * |
| Sentence Count | 0.20 * | 0.15 * |
| Max Depth | 0.10 * | 0.07 * |
| Complexity Score | 0.21 * | 0.15 * |
| Total number of narratives | 289,640 | 238,564 |
| Coroner/Medical Examiner Narrative | Law Enforcement Narrative | |
|---|---|---|
| Characteristics | Odds Ratio (95% CI) | Odds Ratio (95% CI) |
| Decedent Characteristics | ||
| Race/Ethnicity (ref = White, Non-Hispanic) | ||
| American Indian/Alaska Native, non-Hispanic | 0.99 (0.97, 1.00) | 0.99 (0.97, 1.01) |
| Asian/Pacific Islander, non-Hispanic | 1.00 (0.99, 1.02) | 0.96 *** (0.94, 0.97) |
| Black or African American, non-Hispanic | 0.98 *** (0.98, 0.99) | 0.91 *** (0.90, 0.92) |
| Hispanic | 1.02 *** (1.01, 1.03) | 0.97 *** (0.96, 0.98) |
| Other or unknown race, non-Hispanic | 0.99 (0.97, 1.00) | 0.99 (0.97, 1.01) |
| Sex (ref = Male) | ||
| Female | 1.03 *** (1.03, 1.04) | 1.04 *** (1.03, 1.05) |
| Age in Years (ref = 65+) | ||
| 12–17 | 1.12 *** (1.11, 1.14) | 1.28 *** (1.26, 1.30) |
| 18–24 | 1.02 *** (1.01, 1.03) | 1.13 *** (1.12, 1.14) |
| 25–44 | 1.01 ** (1.00, 1.02) | 1.09 *** (1.08, 1.10) |
| 45–64 | 1.01 ** (1.00, 1.01) | 1.04 *** (1.04, 1.05) |
| Sexual Orientation and/or Gender Minority Status (ref = Unknown) | ||
| Heterosexual | 0.96 *** (0.95, 0.96) | 1.07 *** (1.06, 1.08) |
| Lesbian, Gay, Bisexual, Transgender, Queer, Sexual Minority | 1.08 *** (1.06, 1.11) | 1.11 *** (1.08, 1.14) |
| Marital Status (ref = Married/In Relationship) | ||
| Divorced/Separated | 1.00 (0.99, 1.00) | 0.99 *** (0.98, 0.99) |
| Single/Never Married | 0.99 *** (0.99, 1.00) | 0.97 *** (0.97, 0.98) |
| Widowed | 0.99 ** (0.98, 1.00) | 0.96 *** (0.95, 0.97) |
| Unknown | 1.04 *** (1.02, 1.06) | 0.97 * (0.95, 1.00) |
| Education Attainment (ref = High school graduate or less) | ||
| More than high school graduate | 1.03 *** (1.03, 1.04) | 1.02 *** (1.02, 1.03) |
| Unknown | 0.90 *** (0.90, 0.91) | 1.00 (1.00, 1.01) |
| Military Veteran (ref = Unknown) | ||
| No | 1.14 *** (1.13, 1.15) | 1.18 *** (1.16, 1.19) |
| Yes | 1.13 *** (1.12, 1.15) | 1.17 *** (1.16, 1.19) |
| Unhoused (ref = Unknown) | ||
| No | 1.14 *** (1.12, 1.15) | 1.09 *** (1.08, 1.11) |
| Yes | 1.22 *** (1.19, 1.24) | 1.09 *** (1.06, 1.12) |
| Incident Characteristics of Death | ||
| Type of Weapon Used (ref = Firearm) | ||
| Hanging, strangulation, suffocation | 0.95 *** (0.94, 0.95) | 0.92 *** (0.91, 0.92) |
| Poisoning | 0.99 *** (0.98, 0.99) | 0.88 *** (0.88, 0.89) |
| Other | 1.03 *** (1.02, 1.04) | 0.96 *** (0.95, 0.97) |
| Location of Death (ref = Home) | ||
| Hospice or Long-term Care | 0.95 *** (0.92, 0.97) | 0.94 *** (0.91, 0.97) |
| Hospital | 0.96 *** (0.95, 0.97) | 1.01 (1.00, 1.02) |
| Other | 0.98 *** (0.98, 0.99) | 0.99 *** (0.98, 0.99) |
| Unknown | 0.79 *** (0.77, 0.82) | 0.87 *** (0.84, 0.91) |
| Toxicology Report Present (ref = No) | ||
| Yes | 1.00 (0.99, 1.00) | 0.91 *** (0.91, 0.92) |
| Autopsy Performed (ref = Unknown) | ||
| No | 0.97 * (0.95, 1.00) | 0.96 ** (0.93, 0.99) |
| Yes | 0.93 *** (0.91, 0.96) | 0.95 ** (0.92, 0.98) |
| Census Division (ref = Pacific) | ||
| EN Central | 0.69 *** (0.69, 0.70) | 0.79 *** (0.78, 0.80) |
| ES Central | 0.44 *** (0.43, 0.44) | 0.45 *** (0.44, 0.46) |
| Middle Atlantic | 0.64 *** (0.63, 0.64) | 0.93 *** (0.92, 0.94) |
| Mountain | 0.88 *** (0.87, 0.88) | 1.06 *** (1.05, 1.07) |
| New England | 0.67 *** (0.67, 0.68) | 0.73 *** (0.72, 0.74) |
| S Atlantic | 0.65 *** (0.65, 0.66) | 0.62 *** (0.62, 0.63) |
| WN Central | 0.73 *** (0.72, 0.73) | 0.70 *** (0.69, 0.71) |
| WS Central | 0.63 *** (0.62, 0.63) | 0.64 *** (0.63, 0.65) |
| Year of Death (ref = 2003–2005) | ||
| Late (2017–2021) | 1.78 *** (1.77, 1.80) | 1.65 *** (1.63, 1.67) |
| Mid (2006–2016) | 1.41 *** (1.40, 1.42) | 1.36 *** (1.35, 1.37) |
| Number of Crises in Record (ref = None) | ||
| More than one | 1.22 *** (1.21, 1.23) | 1.28 *** (1.27, 1.29) |
| One | 1.11 *** (1.10, 1.11) | 1.15 *** (1.14, 1.15) |
| Number of Licit and Illicit Substances in Record (ref = None) | ||
| More than one | 1.21 *** (1.20, 1.22) | 1.21 *** (1.21, 1.22) |
| One | 1.14 *** (1.14, 1.15) | 1.20 *** (1.20, 1.21) |
| Intercept | 81.81 *** (79.38, 84.32) | 90.70 *** (87.32, 94.23) |
| Observations | 289,640 | 238,564 |
| Coroner/Medical Examiner Narrative | Law Enforcement Narrative | |
|---|---|---|
| Characteristics | B (SE) | B (SE) |
| Decedent Characteristics | ||
| Race/Ethnicity (ref = White, Non-Hispanic) | ||
| American Indian/Alaska Native, non-Hispanic | −0.01 (0.01) | −0.01 (0.02) |
| Asian/Pacific Islander, non-Hispanic | 0.01 (0.01) | −0.08 ** (0.01) |
| Black or African American, non-Hispanic | −0.01 * (0.00) | −0.15 ** (0.01) |
| Hispanic | 0.01 ** (0.00) | −0.07 ** (0.01) |
| Other or unknown race, non-Hispanic | −0.01 (0.01) | −0.02 (0.02) |
| Sex (ref = Male) | ||
| Female | 0.03 ** (0.00) | 0.05 ** (0.01) |
| Age in Years (ref = 65+) | ||
| 12–17 | 0.09 ** (0.01) | 0.36 ** (0.01) |
| 18–24 | 0.01 (0.00) | 0.17 ** (0.01) |
| 25–44 | 0.00 (0.00) | 0.12 ** (0.01) |
| 45–64 | 0.00 (0.00) | 0.06 ** (0.01) |
| Sexual Orientation and/or Gender Minority Status (ref = Unknown) | ||
| Heterosexual | −0.05 ** (0.00) | 0.13 ** (0.01) |
| Lesbian, Gay, Bisexual, Transgender, Queer, Sexual Minority | 0.08 ** (0.01) | 0.20 ** (0.02) |
| Marital Status (ref = Married/In Relationship) | ||
| Divorced/Separated | −0.00 (0.00) | −0.02 ** (0.01) |
| Single/Never Married | −0.01 * (0.00) | −0.04 ** (0.01) |
| Widowed | −0.01 (0.00) | −0.05 ** (0.01) |
| Unknown | 0.02 (0.01) | −0.07 * (0.02) |
| Educational Attainment (ref = High school graduate or less) | ||
| More than high school graduate | 0.03 ** (0.00) | 0.04 ** (0.00) |
| Unknown | −0.09 ** (0.00) | 0.04 ** (0.01) |
| Military Veteran (ref = Unknown) | ||
| No | 0.12 ** (0.01) | 0.26 ** (0.01) |
| Yes | 0.12 ** (0.01) | 0.24 ** (0.01) |
| Unhoused (ref = Unknown) | ||
| No | 0.14 ** (0.01) | 0.18 ** (0.02) |
| Yes | 0.21 ** (0.01) | 0.16 ** (0.02) |
| Incident Characteristics of Death | ||
| Type of Weapon Used (ref = Firearm) | ||
| Hanging, strangulation, suffocation | −0.06 ** (0.00) | −0.14 ** (0.00) |
| Poisoning | −0.02 ** (0.00) | −0.20 ** (0.01) |
| Other | 0.02 ** (0.00) | −0.09 ** (0.01) |
| Location of Death (ref = Home) | ||
| Hospice or Long-term Care | −0.05 ** (0.01) | −0.11 ** (0.03) |
| Hospital | −0.03 ** (0.00) | 0.01 (0.01) |
| Other | −0.01 ** (0.00) | −0.03 ** (0.00) |
| Unknown | −0.23 ** (0.02) | −0.21 ** (0.03) |
| Toxicology Report Present (ref = No) | ||
| Yes | 0.01 * (0.00) | −0.13 ** (0.01) |
| Autopsy Performed (ref = Unknown) | ||
| No | −0.01 (0.01) | −0.10 ** (0.02) |
| Yes | −0.07 ** (0.01) | −0.13 ** (0.02) |
| Census Division (ref = Pacific) | ||
| EN Central | −0.36 ** (0.00) | −0.34 ** (0.01) |
| ES Central | −0.78 ** (0.01) | −1.29 ** (0.01) |
| Middle Atlantic | −0.45 ** (0.00) | −0.33 ** (0.01) |
| Mountain | −0.12 ** (0.00) | 0.08 ** (0.01) |
| New England | −0.39 ** (0.01) | −0.49 ** (0.01) |
| S Atlantic | −0.41 ** (0.00) | −0.77 ** (0.01) |
| WN Central | −0.35 ** (0.01) | −0.54 ** (0.01) |
| WS Central | −0.44 ** (0.00) | −0.67 ** (0.01) |
| Year of Death (ref = 2003–2005) | ||
| Late (2017–2021) | 0.52 ** (0.00) | 0.72 ** (0.01) |
| Mid (2006–2016) | 0.30 ** (0.00) | 0.44 ** (0.01) |
| Number of Crises in Record (ref = None) | ||
| More than one | 0.20 ** (0.00) | 0.41 ** (0.01) |
| One | 0.11 ** (0.00) | 0.23 ** (0.00) |
| Number of Licit and Illicit Substances in Record (ref = None) | ||
| More than one | 0.20 ** (0.00) | 0.30 ** (0.01) |
| One | 0.15 ** (0.00) | 0.31 ** (0.01) |
| Intercept | 4.47 ** (0.02) | 5.83 ** (0.03) |
| Observations | 289,640 | 238,564 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chance, C.; Arseniev-Koehler, A.; Mays, V.M.; Chang, K.-W.; Cochran, S.D. Measuring Narrative Complexity Among Suicide Deaths in the National Violent Death Reporting System (2003–2021 NVDRS). Information 2025, 16, 989. https://doi.org/10.3390/info16110989
Chance C, Arseniev-Koehler A, Mays VM, Chang K-W, Cochran SD. Measuring Narrative Complexity Among Suicide Deaths in the National Violent Death Reporting System (2003–2021 NVDRS). Information. 2025; 16(11):989. https://doi.org/10.3390/info16110989
Chicago/Turabian StyleChance, Christina, Alina Arseniev-Koehler, Vickie M. Mays, Kai-Wei Chang, and Susan D. Cochran. 2025. "Measuring Narrative Complexity Among Suicide Deaths in the National Violent Death Reporting System (2003–2021 NVDRS)" Information 16, no. 11: 989. https://doi.org/10.3390/info16110989
APA StyleChance, C., Arseniev-Koehler, A., Mays, V. M., Chang, K.-W., & Cochran, S. D. (2025). Measuring Narrative Complexity Among Suicide Deaths in the National Violent Death Reporting System (2003–2021 NVDRS). Information, 16(11), 989. https://doi.org/10.3390/info16110989

