Innovations in IT Recruitment: How Data Mining Is Redefining the Search for Best Talent (A Case Study of IT Recruitment in Morocco)
Abstract
1. Introduction
2. Research Method
2.1. Phase 1: Literature Review and PCF Development
2.2. Phase 2: Questionnaire Design and Hypotheses Testing via Binary Regression Analysis
3. Relevant Literature
3.1. The Transformative Potential of Data Mining in HR Recruitment
3.2. Theoretical Foundations: A Multidimensional Framework
3.3. Review of Key Determinants in Algorithmic Recruitment
4. Results
4.1. Study Presentation and Sample Selection
4.2. Reliability Test
4.3. Chi-Square Test
4.4. Cramer’s V Test
4.5. Adjusted R2 Test
4.6. Estimation of the Coefficients
4.7. Sigmoïd Functions
4.8. Area Under Curve (AUC) Test
4.9. Summary Responses to the Research Objectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Logit Transformation Detail
Appendix B. Extract of the Survey Questionnaire
- Explanatory Variables
- (Please indicate your level of agreement with each statement. Scale: 1 = Strongly Disagree, 2 = Disagree, 3 = Neutral, 4 = Agree, 5 = Strongly Agree).
- Advanced Data Analytics (ADA): Advanced data analytics contributes positively to the success of the IT recruitment process.
- Performance Prediction (PPR): The prediction of candidate performance has a positive effect on the success of IT recruitment.
- Optimization of the Recruitment Process (ORP): The optimization of the recruitment process improves the success of IT hiring.
- Transparency and Fairness (TF): Transparency and fairness promote the success of the IT recruitment process.
- Adaptability to Specific Needs (ASN): Adaptability to specific job requirements has a positive effect on IT recruitment success.
- Detection of Labor Market Trends (DMT): The detection of labor market trends contributes to the success of IT recruitment.
- Dependent Variable
- 7.
- Success of IT Recruitment (Binary):
References
- Angrave, D.; Charlwood, A.; Kirkpatrick, I.; Lawrence, M.; Stuart, M. HR and analytics: Why HR is set to fail the big data challenge. Hum. Resour. Manag. J. 2016, 26, 1–11. [Google Scholar] [CrossRef]
- Levenson, A. Using workforce analytics to improve strategy execution. Hum. Resour. Manage. 2018, 57, 685–700. [Google Scholar] [CrossRef]
- Cascio, W.F.; Montealegre, R. How Technology Is Changing Work and Organizations. Annu. Rev. Organ. Psychol. Organ. Behav. 2016, 3, 349–375. [Google Scholar] [CrossRef]
- Marler, J.H.; Boudreau, J.W. An evidence-based review of HR Analytics. Int. J. Hum. Resour. Manag. 2017, 28, 3–26. [Google Scholar] [CrossRef]
- Farndale, E.; Thite, M.; Budhwar, P.; Kwon, B. Deglobalization and talent sourcing: Cross-national evidence from high-tech firms. Hum. Resour. Manag. 2021, 60, 259–272. [Google Scholar] [CrossRef]
- Collings, D.G.; Vaiman, V.; Scullion, H. Talent management: A decade of developments. In Talent Management: A Decade of Developments; Emerald Publishing Limited: Leeds, UK, 2022; pp. 1–18. Available online: https://www.emerald.com/insight/content/doi/10.1108/978-1-80117-834-120221001/full/html (accessed on 23 July 2025).
- Vardarlier, P. Digital Transformation of Human Resource Management: Digital Applications and Strategic Tools in HRM. In Digital Business Strategies in Blockchain Ecosystems; Contributions to Management Science; Hacioglu, U., Ed.; Springer International Publishing: Cham, Switzerland, 2020; pp. 239–264. Available online: https://link.springer.com/10.1007/978-3-030-29739-8_11 (accessed on 15 June 2025).
- Margherita, A.; Chalutz-Ben Gal, H.; Topaz, G. Digital Human Resource Management: Innovative Methods to Build a People-Centred Organisation in the Healthcare Industry. In Digital Innovation Management; Passiante, G., Ed.; Springer Nature: Cham, Switzerland, 2025; pp. 61–80, (Applied Innovation and Technology Management); Available online: https://link.springer.com/10.1007/978-3-031-80426-7_4 (accessed on 17 May 2025).
- Leicht-Deobald, U.; Busch, T.; Schank, C.; Weibel, A.; Schafheitle, S.; Wildhaber, I.; Kasper, G. The Challenges of Algorithm-Based HR Decision-Making for Personal Integrity. In Business and the Ethical Implications of Technology; Martin, K., Shilton, K., Smith, J., Eds.; Springer Nature: Cham, Switzerland, 2022; pp. 71–86. Available online: https://link.springer.com/10.1007/978-3-031-18794-0_5 (accessed on 2 July 2025).
- Chamorro-Premuzic, T.; Akhtar, R.; Winsborough, D.; Sherman, R.A. The datafication of talent: How technology is advancing the science of human potential at work. Curr. Opin. Behav. Sci. 2017, 18, 13–16. [Google Scholar] [CrossRef]
- Tambe, P.; Cappelli, P.; Yakubovich, V. Artificial Intelligence in Human Resources Management: Challenges and a Path Forward. Calif. Manag. Rev. 2019, 61, 15–42. [Google Scholar] [CrossRef]
- Cowgill, B.; Freiberg, B.; Starr, E. Clause and Effect: Theory and Field Experimental Evidence on Noncompete Clauses. 2024. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5012370 (accessed on 13 August 2025).
- Han, J.; Pei, J.; Tong, H. Data Mining: Concepts and Techniques; Morgan Kaufmann: Burlington, MA, USA, 2022. [Google Scholar]
- Tan, P.N.; Steinbach, M.; Karpatne, A.; Kumar, V. Classification: Basic concepts and techniques. In Introduction to Data Mining; University of Pisa: Pisa, Italy, 2019; pp. 113–192. [Google Scholar]
- Witten, I.H.; Frank, E.; Hall, M.A.; Pal, C.J.; Data, M. Practical machine learning tools and techniques. In Data Mining; Elsevier Publishers: Amsterdam, The Netherlands, 2017; pp. 403–413. Available online: http://alvarestech.com/temp/Industria4.0/2019/(Morgan%20Kaufmann%20Series%20in%20Data%20Management%20Systems)%20Ian%20H.%20Witten,%20Eibe%20Frank,%20Mark%20A.%20Hall,%20Christopher%20J.%20Pal%20-%20Data%20Mining_%20Practical%20Machine%20Learning%20Tools%20and%20Techniques-Morgan%20Kaufmann%20Publisher.pdf (accessed on 26 June 2025).
- Allal-Chérif, O.; Aránega, A.Y.; Sánchez, R.C. Intelligent recruitment: How to identify, select, and retain talents from around the world using artificial intelligence. Technol. Forecast. Soc. Change 2021, 169, 120822. [Google Scholar]
- Van Esch, P.; Black, J.S.; Ferolie, J. Marketing AI recruitment: The next phase in job application and selection. Comput. Hum. Behav. 2019, 90, 215–222. [Google Scholar] [CrossRef]
- Žliobaitė, I. Measuring discrimination in algorithmic decision making. Data Min. Knowl. Discov. 2017, 31, 1060–1089. [Google Scholar] [CrossRef]
- Liem, C.C.; Langer, M.; Demetriou, A.; Hiemstra, A.M.; Wicaksana, A.S.; Born, M.P.; König, C.J. Psychology Meets Machine Learning. In Explainable and Interpretable Models in Computer Vision and Machine Learning; Springer International: Cham, Switzerland, 2018; Available online: https://osf.io/4rdvt/download (accessed on 3 June 2025).
- Margherita, E.G.; Bua, I. The role of human resource practices for the development of Operator 4.0 in Industry 4.0 organisations: A literature review and a research agenda. Businesses 2021, 1, 18–33. [Google Scholar] [CrossRef]
- Yarkoni, T.; Westfall, J. Choosing Prediction Over Explanation in Psychology: Lessons From Machine Learning. Perspect. Psychol. Sci. 2017, 12, 1100–1122. [Google Scholar] [CrossRef] [PubMed]
- Strohmeier, S. Smart HRM—A Delphi study on the application and consequences of the Internet of Things in Human Resource Management. Int. J. Hum. Resour. Manag. 2020, 31, 2289–2318. [Google Scholar] [CrossRef]
- Khandelwal, K.; Upadhyay, A.K.; Rukadikar, A. The synergy of human resource development (HRD) and artificial intelligence (AI) in today’s workplace. Hum. Resour. Dev. Int. 2024, 27, 622–639. [Google Scholar] [CrossRef]
- Strohmeier, S.; Piazza, F. Artificial Intelligence Techniques in Human Resource Management—A Conceptual Exploration. In Intelligent Techniques in Engineering Management; Intelligent Systems Reference Library; Kahraman, C., Çevik Onar, S., Eds.; Springer International Publishing: Cham, Switzerland, 2015; Volume 87, pp. 149–172. Available online: https://link.springer.com/10.1007/978-3-319-17906-3_7 (accessed on 13 April 2025).
- Chien, C.F.; Chen, L.F. Data mining to improve personnel selection and enhance human capital: A case study in high-technology industry. Expert Syst. Appl. 2008, 34, 280–290. [Google Scholar] [CrossRef]
- Gong, Q.; Fan, D.; Bartram, T. Integrating artificial intelligence and human resource management: A review and future research agenda. Int. J. Hum. Resour. Manag. 2025, 36, 103–141. [Google Scholar] [CrossRef]
- Hamdane, A.; Belhaj, N.; El Hamdaoui, H.; Aissaoui, K.; El Bekkali, M.; El Houda Chaoui, N. Big data based architecture to bringing together graduates and recruiters: Case of Moroccan university. Indones. J. Electr. Eng. Comput. Sci. 2022, 26, 1701–1709. [Google Scholar] [CrossRef]
- Kişi, N. Exploratory research on the use of blockchain technology in recruitment. Sustainability 2022, 14, 10098. [Google Scholar] [CrossRef]
- Creswell, J.W.; Creswell, J.D. Research Design: Qualitative, Quantitative, and Mixed Methods Approaches; Sage publications: London, UK, 2017. [Google Scholar]
- Hair, J.F.; Ringle, C.M.; Gudergan, S.P.; Fischer, A.; Nitzl, C.; Menictas, C. Partial least squares structural equation modeling-based discrete choice modeling: An illustration in modeling retailer choice. Bus. Res. 2019, 12, 115–142. [Google Scholar] [CrossRef]
- Tranfield, D.; Denyer, D.; Smart, P. Towards a Methodology for Developing Evidence-Informed Management Knowledge by Means of Systematic Review. Br. J. Manag. 2003, 14, 207–222. [Google Scholar] [CrossRef]
- Webster, J.; Watson, R.T. Analyzing the past to prepare for the future: Writing a literature review. MIS Q. 2002, 26, xiii–xxiii. [Google Scholar]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. BMJ 2009, 8, 339. Available online: https://www.bmj.com/content/339/bmj.b2535.short (accessed on 4 April 2025).
- Braun, V.; Clarke, V. Using thematic analysis in psychology. Qual. Res. Psychol. 2006, 3, 77–101. [Google Scholar] [CrossRef]
- Etikan, I.; Musa, S.A.; Alkassim, R.S. Comparison of convenience sampling and purposive sampling. Am. J. Theor. Appl. Stat. 2016, 5, 1–4. [Google Scholar] [CrossRef]
- Palinkas, L.A.; Horwitz, S.M.; Green, C.A.; Wisdom, J.P.; Duan, N.; Hoagwood, K. Purposeful Sampling for Qualitative Data Collection and Analysis in Mixed Method Implementation Research. Adm. Policy Ment. Health 2015, 42, 533–544. [Google Scholar] [CrossRef]
- Tabachnick, B.G.; Fidell, L.S. Using Multivariate Statistics: Always Learning; Pearson: Boston, MA, USA, 2013. [Google Scholar]
- Aparna, S.M.; Kumar, S. Changing landscapes in recruitment: A critical analysis of past, present and future. Pers. Rev. 2025, 54, 1276–1315. [Google Scholar] [CrossRef]
- Bastida, M.; Vaquero García, A.; Vazquez Taín, M.Á.; Del Río Araujo, M. From automation to augmentation: Human resource’s journey with artificial intelligence. J. Ind. Inf. Integr. 2025, 46, 100872. [Google Scholar] [CrossRef]
- Qin, C.; Zhang, L.; Cheng, Y.; Zha, R.; Shen, D.; Zhang, Q.; Chen, X.; Sun, Y.; Zhu, C.; Zhu, H.; et al. A comprehensive survey of artificial intelligence techniques for talent analytics. Proc. IEEE 2025, 113, 125–171. Available online: https://ieeexplore.ieee.org/abstract/document/11027075/ (accessed on 30 July 2025). [CrossRef]
- Acikgoz, Y.; Bergman, S.M. Social Media and Employee Recruitment: Chasing the Run Away Bandwagon. In Social Media in Employee Selection and Recruitment; Landers, R.N., Schmidt, G.B., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 175–195. Available online: http://link.springer.com/10.1007/978-3-319-29989-1_9 (accessed on 30 July 2025).
- Bican, P.M.; Brem, A. Digital business model, digital transformation, digital entrepreneurship: Is there a sustainable “digital”? Sustainability 2020, 12, 5239. [Google Scholar] [CrossRef]
- Pillai, R.; Sivathanu, B. Adoption of artificial intelligence (AI) for talent acquisition in IT/ITeS organizations. Benchmarking Int. J. 2020, 27, 2599–2629. [Google Scholar] [CrossRef]
- Prikshat, V.; Islam, M.; Patel, P.; Malik, A.; Budhwar, P.; Gupta, S. AI-Augmented HRM: Literature review and a proposed multilevel framework for future research. Technol. Forecast. Soc. Change 2023, 193, 122645. [Google Scholar] [CrossRef]
- Kshetri, N. Evolving uses of artificial intelligence in human resource management in emerging economies in the global South: Some preliminary evidence. Manag. Res. Rev. 2021, 44, 970–990. [Google Scholar] [CrossRef]
- Laumer, S.; Maier, C.; Weitzel, T. HR machine learning in recruiting. In Handbook of Research on Artificial Intelligence in Human Resource Management; Edward Elgar Publishing: Cheltenham, UK, 2022; pp. 105–126. Available online: https://www.elgaronline.com/edcollchap/edcoll/9781839107528/9781839107528.00015.xml (accessed on 31 July 2025).
- Binns, R.; Van Kleek, M.; Veale, M.; Lyngs, U.; Zhao, J.; Shadbolt, N. It’s Reducing a Human Being to a Percentage: Perceptions of Justice in Algorithmic Decisions. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, Montreal, QC, Canada, 21–26 April 2018; ACM: Montreal, QC, Canada, 2018; pp. 1–14. Available online: https://dl.acm.org/doi/10.1145/3173574.3173951 (accessed on 28 July 2025).
- Tolan, S.; Miron, M.; Gómez, E.; Castillo, C. Why Machine Learning May Lead to Unfairness: Evidence from Risk Assessment for Juvenile Justice in Catalonia. In Proceedings of the Seventeenth International Conference on Artificial Intelligence and Law, Montreal, QC, Canada, 17–21 June 2019; ACM: Montreal, QC, Canada, 2019; pp. 83–92. Available online: https://dl.acm.org/doi/10.1145/3322640.3326705 (accessed on 30 July 2025).
- Davis, F.D. Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q. 1989, 13, 319–340. [Google Scholar] [CrossRef]
- Venkatesh, V.; Bala, H. Technology Acceptance Model 3 and a Research Agenda on Interventions. Decis. Sci. 2008, 39, 273–315. [Google Scholar] [CrossRef]
- Dwivedi, Y.K.; Hughes, L.; Ismagilova, E.; Aarts, G.; Coombs, C.; Crick, T.; Duan, Y.; Dwivedi, R.; Edwards, J.; Eirug, A.; et al. Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. Int. J. Inf. Manag. 2021, 57, 101994. [Google Scholar] [CrossRef]
- Zhang, L.; Yencha, C. Examining perceptions towards hiring algorithms. Technol. Soc. 2022, 68, 101848. [Google Scholar] [CrossRef]
- Conte, F.; Siano, A. Data-driven human resource and data-driven talent management in internal and recruitment communication strategies: An empirical survey on Italian firms and insights for European context. Corp. Commun. Int. J. 2023, 28, 618–637. [Google Scholar] [CrossRef]
- Ryan, R.M.; Deci, E.L. Self-Determination Theory. In Encyclopedia of Quality of Life and Well-Being Research; Maggino, F., Ed.; Springer International Publishing: Cham, Switzerland, 2023; pp. 6229–6235. Available online: https://link.springer.com/10.1007/978-3-031-17299-1_2630 (accessed on 29 July 2025).
- Tursunbayeva, A. Augmenting Human Resource Management with Artificial Intelligence: Towards an Inclusive, Sustainable, and Responsible Future; Springer Nature: Cham, Switzerland, 2024; Available online: https://books.google.com/books?hl=fr&lr=&id=myI6EQAAQBAJ&oi=fnd&pg=PR7&dq=Tursunbayeva,+A+Algorithmic+systems+that+restrict+discretion+or+devalue+recruiters%27+expertise+can+hinder+motivational+alignment&ots=0wio2BeoMq&sig=uutBT-PBmvScx1PhSFEUf3JmeuE (accessed on 29 July 2025).
- Sharma, R.; Mithas, S.; Kankanhalli, A. Transforming decision-making processes: A research agenda for understanding the impact of business analytics on organisations. Eur. J. Inf. Syst. 2014, 23, 433–441. [Google Scholar] [CrossRef]
- Tornatzky, L.G.; Fleischer, M. The Processes of Technological Innovation; Lexington Books: Lexington, MA, USA, 1990. [Google Scholar]
- Wamba, S.F.; Gunasekaran, A.; Akter, S.; Ren, S.J.; Dubey, R.; Childe, S.J. Big data analytics and firm performance: Effects of dynamic capabilities. J. Bus. Res. 2017, 70, 356–365. [Google Scholar] [CrossRef]
- Oliveira, T.; Thomas, M.; Espadanal, M. Assessing the determinants of cloud computing adoption: An analysis of the manufacturing and services sectors. Inf. Manage. 2014, 51, 497–510. [Google Scholar] [CrossRef]
- Barney, J. Firm Resources and Sustained Competitive Advantage. J. Manag. 1991, 17, 99–120. [Google Scholar] [CrossRef]
- Melville, N.P. Information systems innovation for environmental sustainability. MIS Q. 2010, 34, 1–21. [Google Scholar] [CrossRef]
- Teece, D.J. Business models and dynamic capabilities. Long. Range Plann. 2018, 51, 40–49. [Google Scholar] [CrossRef]
- Mikalef, P.; Pappas, I.O.; Krogstie, J.; Pavlou, P.A. Big data and business analytics: A research agenda for realizing business value. Inf. Manage. 2020, 57, 103237. [Google Scholar] [CrossRef]
- Ajzen, I. The theory of planned behavior. Organ. Behav. Hum. Decis. Process. 1991, 50, 179–211. [Google Scholar] [CrossRef]
- Chau, P.Y.K.; Hu, P.J. Examining a Model of Information Technology Acceptance by Individual Professionals: An Exploratory Study. J. Manag. Inf. Syst. 2002, 18, 191–229. [Google Scholar] [CrossRef]
- Latour, B. Reassembling the Social: An Introduction to Actor-Network-Theory; Oxford University Press: Oxford, UK, 2005. [Google Scholar]
- Orlikowski, W.J.; Scott, S.V. Exploring Material-Discursive Practices. J. Manag. Stud. 2015, 52, 697–705. [Google Scholar] [CrossRef]
- Uhl-Bien, M.; Arena, M. Leadership for organizational adaptability: A theoretical synthesis and integrative framework. Leadersh. Q. 2018, 29, 89–104. [Google Scholar] [CrossRef]
- Pessach, D.; Singer, G.; Avrahami, D.; Chalutz Ben-Gal, H.; Shmueli, E.; Ben-Gal, I. Employees recruitment: A prescriptive analytics approach via machine learning and mathematical programming. Decis. Support Syst. 2020, 134, 113290. [Google Scholar] [CrossRef]
- Uma, V.R.; Velchamy, I.; Upadhyay, D. Recruitment Analytics: Hiring in the Era of Artificial Intelligence. In The Adoption and Effect of Artificial Intelligence on Human Resources Management, Part A; Tyagi, P., Chilamkurti, N., Grima., S., Sood, K., Balusamy, B., Eds.; Emerald Publishing Limited: Leeds, UK, 2023; Available online: https://doi.org/10.1108/978-1-80382-027-920231008 (accessed on 28 July 2025).
- Bag, S.; Dhamija, P.; Pretorius, J.H.C.; Chowdhury, A.H.; Giannakis, M. Sustainable electronic human resource management systems and firm performance: An empirical study. Int. J. Manpow. 2021, 43, 32–51. [Google Scholar] [CrossRef]
- Dhamija, P.; Bag, S. Role of artificial intelligence in operations environment: A review and bibliometric analysis. TQM J. 2020, 32, 869–896. [Google Scholar] [CrossRef]
- Fleiß, J.; Bäck, E.; Thalmann, S. Mitigating Algorithm Aversion in Recruiting: A Study on Explainable AI for Conversational Agents. Adv. Inf. Syst. 2024, 55, 56–87. [Google Scholar] [CrossRef]
- Dawson, J.Y.; Agbozo, E. AI in talent management in the digital era—An overview. J. Sci. Technol. Policy Manag. 2024. [Google Scholar] [CrossRef]
- Ramesh, S.; Das, S. Adoption of AI in Talent Acquisition: A Conceptual Framework. In Digital Technologies and Applications; Motahhir, S., Bossoufi, B., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 12–20. [Google Scholar]
- Revillod, G. Why Do Swiss HR Departments Dislike Algorithms in Their Recruitment Process? An Empirical Analysis. Adm. Sci. 2024, 14, 253. [Google Scholar] [CrossRef]
- Köchling, A.; Wehner, M.C. Discriminated by an algorithm: A systematic review of discrimination and fairness by algorithmic decision-making in the context of HR recruitment and HR development. Bus. Res. 2020, 13, 795–848. [Google Scholar] [CrossRef]
- Yan, C.; Chen, Q.; Zhou, X.; Dai, J.; Yang, X. When the Automated Fire Backfires: The Adoption of Algorithm-Based HR Decision-Making Could Induce Consumer’s Unfavorable Ethicality Inferences of the Company. J. Bus. Ethics 2024, 190, 841–859. [Google Scholar] [CrossRef]
- Rodgers, W.; Murray, J.M.; Stefanidis, A.; Degbey, W.Y.; Tarba, S.Y. An artificial intelligence algorithmic approach to ethical decision-making in human resource management processes. Hum. Resour. Manag. Rev. 2023, 33, 100925. [Google Scholar] [CrossRef]
- Parker, S.K.; Grote, G. Automation, Algorithms, and Beyond: Why Work Design Matters More Than Ever in a Digital World. Appl. Psychol. 2022, 71, 1171–1204. [Google Scholar] [CrossRef]
- Gupta, M.; Hassan, Y.; Pandey, J.; Kushwaha, A. Decoding the dark shades of electronic human resource management. Int. J. Manpow. 2021, 43, 12–31. [Google Scholar] [CrossRef]
- Revillod, G. Exploring the Acceptability of Artificial Intelligence in Human Resources Management: Insights from Swiss Organizations. Syst. Res. Behav. Sci. 2025, 42, 1061–1084. [Google Scholar] [CrossRef]
- Raghavan, M.; Barocas, S.; Kleinberg, J.; Levy, K. Mitigating bias in algorithmic hiring: Evaluating claims and practices. In Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, Barcelona, Spain, 27–30 January 2020; ACM: Barcelona, Spain, 2020; pp. 469–481. Available online: https://dl.acm.org/doi/10.1145/3351095.3372828 (accessed on 25 July 2025).
- Suresh, H.; Guttag, J.V. A framework for understanding unintended consequences of machine learning. arXiv 2019, arXiv:190110002. [Google Scholar]
- Ochmann, J.; Michels, L.; Tiefenbeck, V.; Maier, C.; Laumer, S. Perceived algorithmic fairness: An empirical study of transparency and anthropomorphism in algorithmic recruiting. Inf. Syst. J. 2024, 34, 384–414. [Google Scholar] [CrossRef]
- Hilliard, A.; Guenole, N.; Leutner, F. Robots are judging me: Perceived fairness of algorithmic recruitment tools. Front. Psychol. 2022, 13, 940456. Available online: https://www.frontiersin.org/journals/psychology/articles/10.3389/fpsyg.2022.940456/full (accessed on 12 July 2025). [CrossRef] [PubMed]
- Dastin, J. Amazon scraps secret AI recruiting tool that showed bias against women. In Ethics of Data and Analytics; Auerbach Publications, CRC Press: Boca Raton, FL, USA, 2022; pp. 296–299. Available online: https://www.taylorfrancis.com/chapters/edit/10.1201/9781003278290-44/amazon-scraps-secret-ai-recruiting-tool-showed-bias-women-jeffrey-dastin (accessed on 25 July 2025).
- Shin, D.; Zhong, B.; Biocca, F.A. Beyond user experience: What constitutes algorithmic experiences? Int. J. Inf. Manag. 2020, 52, 102061. [Google Scholar] [CrossRef]
- Fumagalli, E.; Rezaei, S.; Salomons, A. OK computer: Worker perceptions of algorithmic recruitment. Res. Policy. 2022, 51, 104420. [Google Scholar]
- Snell, S.; Morris, S. Managing Human Resources; Scientific Research Publishing: Wuhan, China, 2019; Available online: https://www.scirp.org/reference/referencespapers?referenceid=3602887 (accessed on 12 July 2025).
- Snell, S.A.; Morris, S.S.; Serre, B. The Human Resource Ecosystem: Reconciling Alignment and Disruption. In Research in Personnel and Human Resources Management; Buckley, M.R., Wheeler, A.R., Baur, J.E., Halbesleben, J.R.B., Eds.; Emerald Publishing Limited: Leeds, UK, 2022; pp. 43–59. Available online: http://www.emerald.com/books/edited-volume/14205/chapter/85107827 (accessed on 30 July 2025).
- Saputra, A.; Wang, G.; Zhang, J.Z.; Behl, A. The framework of talent analytics using big data. TQM J. 2021, 34, 178–198. [Google Scholar] [CrossRef]
- Horodyski, P. Applicants’ perception of artificial intelligence in the recruitment process. Comput. Hum. Behav. Rep. 2023, 11, 100303. [Google Scholar] [CrossRef]
- Nunnally, J.C. Psychometric Theory; McGraw-Hill: New York, NY, USA, 1978. [Google Scholar]
- George, D.; Mallery, P. SPSS for Windows Step by Step a Simple Guide and Reference 16.0 Update, 9th ed.; Boston Pearson Education: Boston, MA, USA, 2009; Available online: https://www.scirp.org/reference/referencespapers?referenceid=591596 (accessed on 28 July 2025).
- Pras, B.; Evrard, Y.; Roux, E. Market: Études et recherches en marketing-Fondements, méthodes. 2003. Available online: https://ideas.repec.org/p/hal/journl/halshs-00150660.html (accessed on 28 July 2025).
- Feldt, L.S.; Woodruff, D.J.; Salih, F.A. Statistical Inference for Coefficient Alpha. Appl. Psychol. Meas. 1987, 11, 93–103. [Google Scholar] [CrossRef]
- Barnette, J.J. ScoreRel CI: An Excel Program for Computing Confidence Intervals for Commonly Used Score Reliability Coefficients. Educ. Psychol. Meas. 2005, 65, 980–983. [Google Scholar] [CrossRef]
- Van Zyl, J.M.; Neudecker, H.; Nel, D.G. On the Distribution of the Maximum Likelihood Estimator of Cronbach’s Alpha. Psychometrika 2000, 65, 271–280. [Google Scholar]
- Iacobucci, D.; Duhachek, A. Advancing alpha: Measuring reliability with confidence. J. Consum. Psychol. 2003, 13, 478–487. [Google Scholar] [CrossRef]
- Stigler, S.M. Karl Pearson’s Theoretical Errors and the Advances they Inspired. 2008. Available online: https://projecteuclid.org/journals/statistical-science/volume-23/issue-2/Karl-Pearsons-Theoretical-Errors-and-the-Advances-They-Inspired/10.1214/08-STS256.short (accessed on 31 July 2025).
- Stone, D.L.; Deadrick, D.; Lukaszewski, K.M.; Johnson, R. The influence of technology on the future of human resource management. Hum. Resour. Manag. Rev. 2015, 25, 216–231. [Google Scholar] [CrossRef]
- Johnson, R.D.; Stone, D.L. Advantages and Unintended Consequences of Using Electronic Human Resource Management (eHRM) Processes. In The Cambridge Handbook of Technology and Employee Behavior; Landers, R.N., Ed.; Cambridge University Press: Cambridge, UK, 2019; pp. 879–920. Available online: https://www.cambridge.org/core/books/cambridge-handbook-of-technology-and-employee-behavior/advantages-and-unintended-consequences-of-using-electronic-human-resource-management-ehrm-processes/CADFBD889CEA35EF2FD8E29376483CB1 (accessed on 25 August 2025).
- Lee, I. Modeling the benefit of e-recruiting process integration. Decis. Support. Syst. 2011, 51, 230–239. [Google Scholar] [CrossRef]
- Hosain, M.S.; Amin, M.B.; Debnath, G.C.; Rahaman, M.A. The use of Artificial Intelligence (AI) in the hiring process: Job applicants’ perceptions of procedural justice. Comput. Hum. Behav. Rep. 2025, 19, 100713. [Google Scholar] [CrossRef]
- Malinowski, J.; Keim, T.; Weitzel, T. Analyzing the Impact of IS Support on Recruitment Processes: An E-Recruitment Phase Model. In Proceedings of the Ninth Pacific Asia Conference on Information System, Bangkok, Thailand, 7–10 July 2005; pp. 1–2. Available online: https://aisel.aisnet.org/cgi/viewcontent.cgi?article=1193&context=pacis2005 (accessed on 3 July 2025).
- Nelder, J.A.; Wedderburn, R.W. Generalized linear models. J. R. Stat. Soc. Ser. A Stat. Soc. 1972, 135, 370–384. [Google Scholar] [CrossRef]
- Bordeaux, G.; Couto, A. A binary logistic regression model to identify key aspects that enhance global hub airports status. J. Air Transp. Res. Soc. 2024, 3, 100035. [Google Scholar] [CrossRef]
Category | Attribute | n | Arithmetic Mean | Standard Deviation | |
---|---|---|---|---|---|
Gender | Male | 124 | 62.0% | - | - |
Female | 76 | 38.0% | |||
Age (years) | <30 | 52 | 26.0% | 37 | 9.3 |
30–39 | 74 | 37.0% | |||
40–49 | 56 | 28.0% | |||
≥50 | 18 | 09.0% | |||
Recruiter experience (years) | <5 | 68 | 34.0% | 6.9 | 3.8 |
5–9 | 74 | 37.0% | |||
≥10 | 58 | 29.0% | |||
Firm size (employees) | <250 | 62 | 31.0% | 466 | 206 |
250–499 | 48 | 24.0% | |||
≥500 | 90 | 45.0% | |||
Sector | Aeronautics | 108 | 54.0% | - | - |
Digital services | 92 | 46.0% | |||
Education | Bachelor’s degree | 68 | 34.0% | - | - |
Master’s degree | 94 | 47.0% | |||
Doctorate/Other | 38 | 19.0% |
Cronbach’s Alpha | Cronbach’s Alpha Based on Standardized Elements | Number of Elements |
---|---|---|
0.856 | 0.846 | 6 |
Intra-Class Correlation | 95% Confidence Interval | Fisher Test | |||||
---|---|---|---|---|---|---|---|
Lower Bound | Upper Bound | Value | Sig. | ||||
Single Measures | 0.397 | 0.370 | 0.425 | 5.611 | 199 | 995 | 0.000 |
Average Measures | 0.852 | 0.834 | 0.868 | 5.611 | 199 | 995 | 0.000 |
Explanatory Variables | Pearson Chi-Square | Likelihood Ratio | Linear-by-Linear Association | ddl | Asymptotic Significance (2-sided) |
---|---|---|---|---|---|
(ADA) | 61.341 | 59.291 | 47.001 | 05 | 0.001 |
(PPR) | 58,209 | 55.376 | 50.501 | 05 | 0.030 |
(ORP) | 47.129 | 40.673 | 38.242 | 05 | 0.000 |
(TF) | 63.304 | 58.479 | 51.112 | 05 | 0.007 |
(ASN) | 39.199 | 31.200 | 29.470 | 05 | 0.013 |
(DMT) | 51.783 | 47.490 | 41.190 | 05 | 0.000 |
Cramer’s V | Approximate Significance | ||
---|---|---|---|
Explanatory Variable | (ADA) | 0.490 | 0.001 |
(PPR) | 0.449 | 0.000 | |
(ORP) | 0.420 | 0.020 | |
(TF) | 0.435 | 0.017 | |
(ASN) | 0.422 | 0.000 | |
(DMT) | 0.389 | 0.000 |
Absolute Value of Cramer’s V | Strength of Association |
---|---|
Between 0 and 0.10 | Negligible association |
Between 0.10 and 0.20 | Very weak association |
Between 0.20 and 0.40 | Moderate association |
Between 0.40 and 0.60 | Relatively strong association |
Between 0.60 and 0.80 | Strong association |
Between 0.80 and 1.00 | Very strong association |
−2 Log Likelihood | Cox and Snell R2 | Nagelkerke R2 | Total Sum of Squares R2 | |
---|---|---|---|---|
396.009 | 0.339 | 0.611 | 0.848 | 0.886 |
Dependent Variable | Y = 1: Success of the IT recruitment process Y = 0: Failure of the IT recruitment process |
Independent variables | X1: Advanced Data Analytics (ADA) X2: Performance Prediction (PPR) X3: Optimization of the Recruitment Process (ORP) X4: Transparency and Fairness (TF) X5: Adaptability to Specific Needs (ASN) X6: Detection of Labor Market Trends (DMT) |
E.S | Wald | ddl | Sig. | |||||
---|---|---|---|---|---|---|---|---|
Inf. | Sup. | |||||||
(ADA) | 2.110 | 0.207 | 28.661 | 1 | 0.008 | 8.248 | 8.017 | 8.437 |
(PPR) | 0.877 | 0.101 | 43.495 | 1 | 0.001 | 2.403 | 2.225 | 2.611 |
(ORP) | 1.501 | 0.214 | 39.023 | 1 | 0.000 | 4.486 | 4.283 | 4.627 |
(TF) | 2.201 | 0.092 | 25.723 | 1 | 0.005 | 9.034 | 8.820 | 9.283 |
(ASN) | 1.980 | 0.121 | 35.311 | 1 | 0.000 | 7.242 | 6.948 | 7.492 |
(DMT) | 1.328 | 0.118 | 41.567 | 1 | 0.006 | 3.773 | 3.539 | 3.918 |
Constant | −10.298 | 0.771 | 71.097 | 1 | 0.030 | 0.000 | - | - |
Independents Variables | AUC | Standard Error | Asymptotic Sig. | Asymptotic Confidence Interval for 95% | |
---|---|---|---|---|---|
Inferior | Superior | ||||
(ADA) | 0.723 | 0.021 | 0.010 | 0.760 | 0.802 |
(PPR) | 0.223 | 0.017 | 0.007 | 0.206 | 0.240 |
(ORP) | 0.461 | 0.022 | 0.027 | 0.439 | 0.483 |
(TF) | 0.827 | 0.020 | 0.000 | 0.807 | 0.847 |
(ASN) | 0.623 | 0.012 | 0.009 | 0.611 | 0.635 |
(DMT) | 0.389 | 0.028 | 0.000 | 0.361 | 0.417 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rouaine, Z.; Abdallah-Ou-Moussa, S.; Wynn, M. Innovations in IT Recruitment: How Data Mining Is Redefining the Search for Best Talent (A Case Study of IT Recruitment in Morocco). Information 2025, 16, 845. https://doi.org/10.3390/info16100845
Rouaine Z, Abdallah-Ou-Moussa S, Wynn M. Innovations in IT Recruitment: How Data Mining Is Redefining the Search for Best Talent (A Case Study of IT Recruitment in Morocco). Information. 2025; 16(10):845. https://doi.org/10.3390/info16100845
Chicago/Turabian StyleRouaine, Zakaria, Soukaina Abdallah-Ou-Moussa, and Martin Wynn. 2025. "Innovations in IT Recruitment: How Data Mining Is Redefining the Search for Best Talent (A Case Study of IT Recruitment in Morocco)" Information 16, no. 10: 845. https://doi.org/10.3390/info16100845
APA StyleRouaine, Z., Abdallah-Ou-Moussa, S., & Wynn, M. (2025). Innovations in IT Recruitment: How Data Mining Is Redefining the Search for Best Talent (A Case Study of IT Recruitment in Morocco). Information, 16(10), 845. https://doi.org/10.3390/info16100845