Machine Learning Prediction of a Battery’s Thermal-Related Health Factor in a Battery Electric Vehicle Using Real-World Driving Data
Abstract
1. Introduction
2. Material and Method
2.1. Data Collection and Preprocessing
2.2. ML Model Evaluation
2.3. Feature Explanation
3. Results and Discussion
4. Conclusions
5. Declaration of Generative AI and AI-Assisted Technologies in the Writing Process
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jiang, M.; Wang, B.; Hao, Y.; Chen, S.; Wen, Y.; Yang, Z. Quantification of CO2 emissions in transportation: An empirical analysis by modal shift from road to waterway transport in Zhejiang, China. Transp. Policy 2024, 145, 177–186. [Google Scholar] [CrossRef]
- Paw, J.K.S.; Kiong, T.S.; Kamarulzaman, M.K.; Adam, A.; Hisham, S.; Kadirgama, K.; Ramasamy, D.; Yaw, C.T.; Yusop, A.F.; Yusaf, T.; et al. Advancing renewable fuel integration: A comprehensive response surface methodology approach for internal combustion engine performance and emissions optimization. Heliyon 2023, 9, e22238. [Google Scholar] [CrossRef] [PubMed]
- Achariyaviriya, W.; Suttakul, P.; Phuphisith, S.; Mona, Y.; Wanison, R.; Phermkorn, P. Potential reductions of CO2 emissions from the transition to electric vehicles: Thailand’s scenarios towards 2030. Energy Rep. 2023, 9, 124–130. [Google Scholar] [CrossRef]
- Rauf, M.; Kumar, L.; Zulkifli, S.A. Aspects of artificial intelligence in future electric vehicle technology for sustainable environmental impact. Environ. Chall. 2024, 14, 100854. [Google Scholar] [CrossRef]
- Choi, W.; Yoo, E.; Seol, E.; Kim, M.; Song, H.H. Greenhouse gas emissions of conventional and alternative vehicles: Predictions based on energy policy analysis in South Korea. Appl. Energy 2024, 265, 114754. [Google Scholar] [CrossRef]
- Sukkam, N.; Onsree, T.; Tippayawong, N. Overview of machine learning applications to battery thermal management systems in electric vehicles. AIP Conf. Proc. 2022, 2681, 020004. [Google Scholar]
- Cheng, P.; Jianjun, X.; Kumar, J.; Almujibah, H.; Ali, H.E.; Alkhalifah, T.; Alkhalaf, S.; Alturise, F.; Ghandour, R. Improving efficiency and optimizing heat transfer in a novel tesla valve through multi-layer perceptron models. Case Stud. Therm. Eng. 2023, 49, 103391. [Google Scholar] [CrossRef]
- Achariyaviriya, W.; Wongsapai, W.; Janpoom, K.; Katongtung, T.; Mona, Y.; Tippayawong, N.; Suttakul, P. Estimating energy consumption of battery electric vehicles using vehicle sensor data and machine learning approaches. Energies 2023, 16, 6351. [Google Scholar] [CrossRef]
- Ren, H.; Yin, L.; Dang, C.; Wu, S.; Jia, L.; Yang, L. Experimental investigation on battery thermal management using phase change materials with different arrangement schemes. Appl. Therm. Eng. 2024, 255, 123991. [Google Scholar] [CrossRef]
- Pruekpramool, C.; Jaroentaku, N.; Srisuttiyakorn, S. Efficiency of Pearson, Spearman and Kendall’s correlation coefficients when data is non-normal distributed. J. Educ. 2020, 15, 1–6. [Google Scholar]
- Carlsson, L. Using Multilayer Perceptrons as Means to Predict the End-Point Temperature in an Electric Arc Furnace. Master’s Thesis, Department of Material Science and Engineering, KTH Royal Institute of Technoligy, Stockholm, Sweden, 2015. [Google Scholar]
- Elmaz, F.; Yücel, Ö.; Mutlu, A.Y. Predictive modeling of biomass gasification with machine learning-based regression methods. Energy 2020, 191, 116541. [Google Scholar] [CrossRef]
- Katongtung, T.; Phromphithak, S.; Onsree, T.; Tippayawong, N. Machine learning approach for predicting hydrothermal liquefaction of lignocellulosic biomass. Bioenergy Res. 2024, 1–13. [Google Scholar] [CrossRef]
- Wongchai, W.; Onsree, T.; Sukkam, N.; Promwungkwa, A.; Tippayawong, N. Machine learning models for estimating above ground biomass of fast growing trees. Expert Syst. Appl. 2022, 199, 117186. [Google Scholar] [CrossRef]
- Janpoom, K.; Suttakul, P.; Achariyaviriya, W.; Fongsamootr, T.; Katongtung, T.; Tippayawong, N. Investigating the influential factors in real-world energy consumption of battery electric vehicles. Energy Rep. 2023, 9, 316–320. [Google Scholar] [CrossRef]
- Lundberg, S.; Lee, S.-I. A unified approach to interpreting model predictions. In Proceedings of the 31st Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 4768–4777. [Google Scholar]
- Gong, H.; Li, Y.; Zhang, J.; Zhang, B.; Wang, X. A new filter feature selection algorithm for classification task by ensembling pearson correlation coefficient and mutual information. Eng. Appl. Artif. Intell. 2024, 131, 107865. [Google Scholar] [CrossRef]
- Antonini, A.S.; Tanzola, J.; Asiain, L.; Ferracutti, G.R.; Castro, S.M.; Bjerg, E.A.; Ganuza, M.L. Machine learning model interpretability using SHAP values: Application to igneous rock classification task. Appl. Comput. Geosci. 2024, 23, 100178. [Google Scholar] [CrossRef]
- Valverde, A.; Quintero, V.; Jaramillo, F.; Perez, A.; Orchard, M. Understanding the effect on the state of health of a lithium-ion battery caused by charging at a high current rate. IFAC-Pap. 2023, 56, 11930–11935. [Google Scholar] [CrossRef]
- Wang, C.; Cui, N.; Cui, Z.; Yuan, H.; Zhang, C. Fusion estimation of lithium-ion battery state of charge and state of health considering the effect of temperature. J. Energy Storage 2022, 53, 105075. [Google Scholar] [CrossRef]
- Hu, W.; Zhang, C.; Liu, S.; Jin, L.; Xu, Z. Multi-objective optimization estimation of state of health for lithium-ion battery based on constant current charging profile. J. Energy Storage 2024, 83, 110785. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhu, J.; Gao, W.; Sun, Y.; Jin, C.; Zheng, Y. Estimation methods for the state of charge and capacity in various states of health of LiFePO4 batteries. J. Energy Storage 2024, 88, 111381. [Google Scholar] [CrossRef]
- Pelosi, D.; Gallorini, F.; Ottaviano, P.; Barelli, L. Real-time lithium-ion battery state of health evaluation based on discrete wavelet transform: The effect of operating temperature. J. Power Sources Adv. 2024, 26, 100136. [Google Scholar] [CrossRef]
- Kumar, K.; Rithvik, G.; Mittal, G.; Arya, R.; Sharma, T.K.; Pareek, K. Impact of fast charging and low-temperature cycling on lithium-ion battery health: A comparative analysis. J. Energy Storage 2024, 94, 112580. [Google Scholar] [CrossRef]
- Youssef, R.; Kalogiannis, T.; Behi, H.; Pirooz, A.; Van Mierlo, J.; Berecibar, M. A comprehensive review of novel cooling techniques and heat transfer coolant mediums investigated for battery thermal management systems in electric vehicles. Energy Rep. 2023, 10, 1014–1068. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, Y.; Zeng, M.; Huang, X.; Wang, Z. An electrothermal coupling model for estimating the internal temperature of lithium-ion battery based on microthermal resistance method. Electrochem. Commun. 2024, 166, 107776. [Google Scholar] [CrossRef]
- Zhang, R.; Li, X.; Sun, C.; Yang, S.; Tian, Y.; Tian, J. State of charge and temperature joint estimation based on ultrasonic reflection waves for lithium-ion battery applications. Batteries 2023, 9, 335. [Google Scholar] [CrossRef]
ML Model | Hyperparameters | Optimized Value |
---|---|---|
Battery Health Factor | ||
MLP | ‘hidden_layer_sizes’ | 100 |
‘activation’ | relu | |
‘solver’ | adam | |
‘learning_rate’ | constant | |
‘max_iter’ | 200 | |
‘max_fun’ | 15,000 | |
‘random_state’ | 7 |
Grouping | Input | Name | Range | Mean | SD |
---|---|---|---|---|---|
Battery conditions | Max charge (kW) | MaxCh | 0–94 | 83.927 | 11.284 |
Charging rate (kW) | CR | −71.49–49.75 | −8.823 | 7.582 | |
Battery current (A) | I | −122.3–181.1 | 21.631 | 19.019 | |
Battery voltage (V) | V | −95.53–448.75 | 346.254 | 145.924 | |
State of charge (%) | SoC | 14.6–90.5 | 60.688 | 18.232 | |
State of health (%) | SoH | 90.59–90.88 | 90.762 | 0.064 | |
Battery temperature (°C) | BT | 24–34 | 29.652 | 2.307 | |
Vehicle motion | Velocity (km/h) | v | 27–108.57 | 67.092 | 23.737 |
Distance (km) | s | 0.034–171.291 | 51.634 | 38.489 | |
Ambient | Humidity (%) | H | 37.36–68.42 | 56.271 | 5.433 |
Payload | Weight (kg) | W | 100–350 | 214.379 | 101.313 |
Cooling system | Battery coolant (°C) | BCL | 21.5–33.5 | 27.960 | 2.311 |
Coolant (°C) | CL | 23–38 | 28.926 | 2.807 | |
Air compressor (kW) | AC | 0–655.35 | 0.304 | 10.919 | |
Output | |||||
Battery health factor (%/°C) | BHF | 0.456–3.326 | 2.0525 | 0.625 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sukkam, N.; Katongtung, T.; Suttakul, P.; Mona, Y.; Achariyaviriya, W.; Tippayawong, K.Y.; Tippayawong, N. Machine Learning Prediction of a Battery’s Thermal-Related Health Factor in a Battery Electric Vehicle Using Real-World Driving Data. Information 2024, 15, 553. https://doi.org/10.3390/info15090553
Sukkam N, Katongtung T, Suttakul P, Mona Y, Achariyaviriya W, Tippayawong KY, Tippayawong N. Machine Learning Prediction of a Battery’s Thermal-Related Health Factor in a Battery Electric Vehicle Using Real-World Driving Data. Information. 2024; 15(9):553. https://doi.org/10.3390/info15090553
Chicago/Turabian StyleSukkam, Natthida, Tossapon Katongtung, Pana Suttakul, Yuttana Mona, Witsarut Achariyaviriya, Korrakot Yaibuathet Tippayawong, and Nakorn Tippayawong. 2024. "Machine Learning Prediction of a Battery’s Thermal-Related Health Factor in a Battery Electric Vehicle Using Real-World Driving Data" Information 15, no. 9: 553. https://doi.org/10.3390/info15090553
APA StyleSukkam, N., Katongtung, T., Suttakul, P., Mona, Y., Achariyaviriya, W., Tippayawong, K. Y., & Tippayawong, N. (2024). Machine Learning Prediction of a Battery’s Thermal-Related Health Factor in a Battery Electric Vehicle Using Real-World Driving Data. Information, 15(9), 553. https://doi.org/10.3390/info15090553