Machine Learning Prediction of a Battery’s Thermal-Related Health Factor in a Battery Electric Vehicle Using Real-World Driving Data
Abstract
:1. Introduction
2. Material and Method
2.1. Data Collection and Preprocessing
2.2. ML Model Evaluation
2.3. Feature Explanation
3. Results and Discussion
4. Conclusions
5. Declaration of Generative AI and AI-Assisted Technologies in the Writing Process
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jiang, M.; Wang, B.; Hao, Y.; Chen, S.; Wen, Y.; Yang, Z. Quantification of CO2 emissions in transportation: An empirical analysis by modal shift from road to waterway transport in Zhejiang, China. Transp. Policy 2024, 145, 177–186. [Google Scholar] [CrossRef]
- Paw, J.K.S.; Kiong, T.S.; Kamarulzaman, M.K.; Adam, A.; Hisham, S.; Kadirgama, K.; Ramasamy, D.; Yaw, C.T.; Yusop, A.F.; Yusaf, T.; et al. Advancing renewable fuel integration: A comprehensive response surface methodology approach for internal combustion engine performance and emissions optimization. Heliyon 2023, 9, e22238. [Google Scholar] [CrossRef] [PubMed]
- Achariyaviriya, W.; Suttakul, P.; Phuphisith, S.; Mona, Y.; Wanison, R.; Phermkorn, P. Potential reductions of CO2 emissions from the transition to electric vehicles: Thailand’s scenarios towards 2030. Energy Rep. 2023, 9, 124–130. [Google Scholar] [CrossRef]
- Rauf, M.; Kumar, L.; Zulkifli, S.A. Aspects of artificial intelligence in future electric vehicle technology for sustainable environmental impact. Environ. Chall. 2024, 14, 100854. [Google Scholar] [CrossRef]
- Choi, W.; Yoo, E.; Seol, E.; Kim, M.; Song, H.H. Greenhouse gas emissions of conventional and alternative vehicles: Predictions based on energy policy analysis in South Korea. Appl. Energy 2024, 265, 114754. [Google Scholar] [CrossRef]
- Sukkam, N.; Onsree, T.; Tippayawong, N. Overview of machine learning applications to battery thermal management systems in electric vehicles. AIP Conf. Proc. 2022, 2681, 020004. [Google Scholar]
- Cheng, P.; Jianjun, X.; Kumar, J.; Almujibah, H.; Ali, H.E.; Alkhalifah, T.; Alkhalaf, S.; Alturise, F.; Ghandour, R. Improving efficiency and optimizing heat transfer in a novel tesla valve through multi-layer perceptron models. Case Stud. Therm. Eng. 2023, 49, 103391. [Google Scholar] [CrossRef]
- Achariyaviriya, W.; Wongsapai, W.; Janpoom, K.; Katongtung, T.; Mona, Y.; Tippayawong, N.; Suttakul, P. Estimating energy consumption of battery electric vehicles using vehicle sensor data and machine learning approaches. Energies 2023, 16, 6351. [Google Scholar] [CrossRef]
- Ren, H.; Yin, L.; Dang, C.; Wu, S.; Jia, L.; Yang, L. Experimental investigation on battery thermal management using phase change materials with different arrangement schemes. Appl. Therm. Eng. 2024, 255, 123991. [Google Scholar] [CrossRef]
- Pruekpramool, C.; Jaroentaku, N.; Srisuttiyakorn, S. Efficiency of Pearson, Spearman and Kendall’s correlation coefficients when data is non-normal distributed. J. Educ. 2020, 15, 1–6. [Google Scholar]
- Carlsson, L. Using Multilayer Perceptrons as Means to Predict the End-Point Temperature in an Electric Arc Furnace. Master’s Thesis, Department of Material Science and Engineering, KTH Royal Institute of Technoligy, Stockholm, Sweden, 2015. [Google Scholar]
- Elmaz, F.; Yücel, Ö.; Mutlu, A.Y. Predictive modeling of biomass gasification with machine learning-based regression methods. Energy 2020, 191, 116541. [Google Scholar] [CrossRef]
- Katongtung, T.; Phromphithak, S.; Onsree, T.; Tippayawong, N. Machine learning approach for predicting hydrothermal liquefaction of lignocellulosic biomass. Bioenergy Res. 2024, 1–13. [Google Scholar] [CrossRef]
- Wongchai, W.; Onsree, T.; Sukkam, N.; Promwungkwa, A.; Tippayawong, N. Machine learning models for estimating above ground biomass of fast growing trees. Expert Syst. Appl. 2022, 199, 117186. [Google Scholar] [CrossRef]
- Janpoom, K.; Suttakul, P.; Achariyaviriya, W.; Fongsamootr, T.; Katongtung, T.; Tippayawong, N. Investigating the influential factors in real-world energy consumption of battery electric vehicles. Energy Rep. 2023, 9, 316–320. [Google Scholar] [CrossRef]
- Lundberg, S.; Lee, S.-I. A unified approach to interpreting model predictions. In Proceedings of the 31st Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 4768–4777. [Google Scholar]
- Gong, H.; Li, Y.; Zhang, J.; Zhang, B.; Wang, X. A new filter feature selection algorithm for classification task by ensembling pearson correlation coefficient and mutual information. Eng. Appl. Artif. Intell. 2024, 131, 107865. [Google Scholar] [CrossRef]
- Antonini, A.S.; Tanzola, J.; Asiain, L.; Ferracutti, G.R.; Castro, S.M.; Bjerg, E.A.; Ganuza, M.L. Machine learning model interpretability using SHAP values: Application to igneous rock classification task. Appl. Comput. Geosci. 2024, 23, 100178. [Google Scholar] [CrossRef]
- Valverde, A.; Quintero, V.; Jaramillo, F.; Perez, A.; Orchard, M. Understanding the effect on the state of health of a lithium-ion battery caused by charging at a high current rate. IFAC-Pap. 2023, 56, 11930–11935. [Google Scholar] [CrossRef]
- Wang, C.; Cui, N.; Cui, Z.; Yuan, H.; Zhang, C. Fusion estimation of lithium-ion battery state of charge and state of health considering the effect of temperature. J. Energy Storage 2022, 53, 105075. [Google Scholar] [CrossRef]
- Hu, W.; Zhang, C.; Liu, S.; Jin, L.; Xu, Z. Multi-objective optimization estimation of state of health for lithium-ion battery based on constant current charging profile. J. Energy Storage 2024, 83, 110785. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhu, J.; Gao, W.; Sun, Y.; Jin, C.; Zheng, Y. Estimation methods for the state of charge and capacity in various states of health of LiFePO4 batteries. J. Energy Storage 2024, 88, 111381. [Google Scholar] [CrossRef]
- Pelosi, D.; Gallorini, F.; Ottaviano, P.; Barelli, L. Real-time lithium-ion battery state of health evaluation based on discrete wavelet transform: The effect of operating temperature. J. Power Sources Adv. 2024, 26, 100136. [Google Scholar] [CrossRef]
- Kumar, K.; Rithvik, G.; Mittal, G.; Arya, R.; Sharma, T.K.; Pareek, K. Impact of fast charging and low-temperature cycling on lithium-ion battery health: A comparative analysis. J. Energy Storage 2024, 94, 112580. [Google Scholar] [CrossRef]
- Youssef, R.; Kalogiannis, T.; Behi, H.; Pirooz, A.; Van Mierlo, J.; Berecibar, M. A comprehensive review of novel cooling techniques and heat transfer coolant mediums investigated for battery thermal management systems in electric vehicles. Energy Rep. 2023, 10, 1014–1068. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, Y.; Zeng, M.; Huang, X.; Wang, Z. An electrothermal coupling model for estimating the internal temperature of lithium-ion battery based on microthermal resistance method. Electrochem. Commun. 2024, 166, 107776. [Google Scholar] [CrossRef]
- Zhang, R.; Li, X.; Sun, C.; Yang, S.; Tian, Y.; Tian, J. State of charge and temperature joint estimation based on ultrasonic reflection waves for lithium-ion battery applications. Batteries 2023, 9, 335. [Google Scholar] [CrossRef]
ML Model | Hyperparameters | Optimized Value |
---|---|---|
Battery Health Factor | ||
MLP | ‘hidden_layer_sizes’ | 100 |
‘activation’ | relu | |
‘solver’ | adam | |
‘learning_rate’ | constant | |
‘max_iter’ | 200 | |
‘max_fun’ | 15,000 | |
‘random_state’ | 7 |
Grouping | Input | Name | Range | Mean | SD |
---|---|---|---|---|---|
Battery conditions | Max charge (kW) | MaxCh | 0–94 | 83.927 | 11.284 |
Charging rate (kW) | CR | −71.49–49.75 | −8.823 | 7.582 | |
Battery current (A) | I | −122.3–181.1 | 21.631 | 19.019 | |
Battery voltage (V) | V | −95.53–448.75 | 346.254 | 145.924 | |
State of charge (%) | SoC | 14.6–90.5 | 60.688 | 18.232 | |
State of health (%) | SoH | 90.59–90.88 | 90.762 | 0.064 | |
Battery temperature (°C) | BT | 24–34 | 29.652 | 2.307 | |
Vehicle motion | Velocity (km/h) | v | 27–108.57 | 67.092 | 23.737 |
Distance (km) | s | 0.034–171.291 | 51.634 | 38.489 | |
Ambient | Humidity (%) | H | 37.36–68.42 | 56.271 | 5.433 |
Payload | Weight (kg) | W | 100–350 | 214.379 | 101.313 |
Cooling system | Battery coolant (°C) | BCL | 21.5–33.5 | 27.960 | 2.311 |
Coolant (°C) | CL | 23–38 | 28.926 | 2.807 | |
Air compressor (kW) | AC | 0–655.35 | 0.304 | 10.919 | |
Output | |||||
Battery health factor (%/°C) | BHF | 0.456–3.326 | 2.0525 | 0.625 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sukkam, N.; Katongtung, T.; Suttakul, P.; Mona, Y.; Achariyaviriya, W.; Tippayawong, K.Y.; Tippayawong, N. Machine Learning Prediction of a Battery’s Thermal-Related Health Factor in a Battery Electric Vehicle Using Real-World Driving Data. Information 2024, 15, 553. https://doi.org/10.3390/info15090553
Sukkam N, Katongtung T, Suttakul P, Mona Y, Achariyaviriya W, Tippayawong KY, Tippayawong N. Machine Learning Prediction of a Battery’s Thermal-Related Health Factor in a Battery Electric Vehicle Using Real-World Driving Data. Information. 2024; 15(9):553. https://doi.org/10.3390/info15090553
Chicago/Turabian StyleSukkam, Natthida, Tossapon Katongtung, Pana Suttakul, Yuttana Mona, Witsarut Achariyaviriya, Korrakot Yaibuathet Tippayawong, and Nakorn Tippayawong. 2024. "Machine Learning Prediction of a Battery’s Thermal-Related Health Factor in a Battery Electric Vehicle Using Real-World Driving Data" Information 15, no. 9: 553. https://doi.org/10.3390/info15090553
APA StyleSukkam, N., Katongtung, T., Suttakul, P., Mona, Y., Achariyaviriya, W., Tippayawong, K. Y., & Tippayawong, N. (2024). Machine Learning Prediction of a Battery’s Thermal-Related Health Factor in a Battery Electric Vehicle Using Real-World Driving Data. Information, 15(9), 553. https://doi.org/10.3390/info15090553