Author Contributions
Conceptualization, P.W., G.K., G.D. and G.S.; methodology, P.W. and P.D.S.; software, P.W. and P.D.S.; formal analysis, P.W. and P.D.S.; resources, G.K. and G.D.; writing—original draft preparation, P.W.; writing—review and editing, G.K., G.D. and G.S.; visualization, P.W.; supervision, G.K., G.D. and G.S.; project administration, G.K., G.D. and G.S. All authors have read and agreed to the published version of the manuscript.
Funding
This research received no external funding.
Institutional Review Board Statement
The research related to human use has complied with all the relevant national regulations, institutional policies, and in accordance with the tenets of the Helsinki Declaration, and has been approved by the author’s Institutional Review Board or equivalent committee (Ethikkommission der Medizinischen Fakultät der Christian-Albrechts-Universität zu Kiel).
Informed Consent Statement
Not applicable.
Data Availability Statement
No new data were created or analyzed in this study. Data sharing is not applicable to this article.
Conflicts of Interest
The authors declare no conflicts of interest.
Abbreviations
The following abbreviations are used in this manuscript:
ANN | Artificial neural network |
CI | Confidence interval |
CNN | Convolutional neural network |
EMG | Electromyography |
ET | Essential tremor |
FFT | Fast Fourier transform |
KiRAT | Kiel Real-time Application Toolkit |
las | Less-affected side |
mas | More-affected side |
PD | Parkinson’s disease |
Relu | Rectified linear unit |
RMS | Root mean square |
SNR | Signal-to-noise ratio |
SVM | Support vector machine |
Tanh | Hyperbolic tangent |
References
- Bhatia, K.P.; Bain, P.; Bajaj, N.; Elble, R.J.; Hallett, M.; Louis, E.D.; Raethjen, J.; Stamelou, M.; Testa, C.M.; Deuschl, G.; et al. Consensus Statement on the classification of tremors. from the task force on tremor of the International Parkinson and Movement Disorder Society. Mov. Disord. Off. J. Mov. Disord. Soc. 2018, 33, 75–87. [Google Scholar] [CrossRef] [PubMed]
- Haubenberger, D.; Hallett, M. Essential tremor. N. Engl. J. Med. 2018, 378, 1802–1810. [Google Scholar] [CrossRef] [PubMed]
- GBD 2016 Parkinson’s Disease Collaborators. Global, regional, and national burden of Parkinson’s disease, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2018, 17, 939–953. [Google Scholar] [CrossRef] [PubMed]
- Deuschl, G.; Bain, P.; Brin, M. Consensus statement of the Movement Disorder Society on tremor: Ad Hoc Scientific Committee. Mov. Disord. Off. J. Mov. Disord. Soc. 1998, 13, 2–23. [Google Scholar] [CrossRef] [PubMed]
- Fakoor, R.; Ladhak, F.; Nazi, A.; Huber, M. Using deep learning to enhance cancer diagnosis and classification. In Proceedings of the International Conference on Machine Learning, Atlanta, GA, USA, 17–19 June; ACM: New York, NY, USA, 2013; Volume 28, pp. 3937–3949. [Google Scholar]
- Shoeb, A.H. Application of Machine Learning to Epileptic Seizure Onset Detection and Treatment. Doctoral Thesis, Harvard University, Cambridge, MA, USA, 2009. [Google Scholar]
- Piepjohn, P.; Bald, C.; Kuhlenbäumer, G.; Becktepe, J.S.; Deuschl, G.; Schmidt, G. Real-time classification of movement patterns of tremor patients. Biomed. Tech. Biomed. Eng. 2022, 67, 119–130. [Google Scholar] [CrossRef] [PubMed]
- Real-Time Framework. Available online: https://www.dss-kiel.de/index.php/research/realtime-framework (accessed on 15 January 2024).
- Digital Signal Processing and System Theory. Available online: https://www.dss-kiel.de/ (accessed on 15 January 2024).
- Daneault, J.-F.; Carignan, B.; Codère, C.É.; Sadikot, A.F.; Duval, C. Using a Smart Phone as a Standalone Platform for Detection and Monitoring of Pathological Tremors. Front. Hum. Neurosci. 2013, 6, 357. [Google Scholar] [CrossRef] [PubMed]
- Hallett, M. Overview of Human Tremor Physiology. Mov. Disord. Off. J. Mov. Disord. Soc. 1998, 13, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Keras. Available online: https://keras.io/ (accessed on 15 January 2024).
- Gatys, L.A.; Ecker, A.S.; Bethge, M. A Neural Algorithm of Artistic Style. arXiv 2015, arXiv:1508.06576. [Google Scholar] [CrossRef]
- Wang, D.; Lu, Z.; Xu, Y.; Wang, Z.I.; Santella, A.; Bao, Z. Cellular structure image classification with small targeted training samples. IEEE Access Pract. Innov. Open Solut. 2019, 7, 148967–148974. [Google Scholar] [CrossRef]
- Hyperband Tuner. Available online: https://keras.io/api/keras_tuner/tuners/hyperband/ (accessed on 15 January 2024).
- Um, T.T.; Pfister, F.M.J.; Pichler, D.; Endo, S.; Lang, M.; Hirche, S.; Fietzek, U.; Kulić, D. Data Augmentation of Wearable Sensor Data for Parkinson’s Disease Monitoring using Convolutional Neural Networks. In Proceedings of the 19th ACM International Conference on Multimodal Interaction (ICMI ’17), Glasgow, UK, 13–17 November 2017; pp. 216–220. [Google Scholar]
- Uchitomi, H.; Ming, X.; Zhao, C.; Ogata, T.; Miyake, Y. Classification of mild Parkinson’s disease: Data augmentation of time-series gait data obtained via inertial measurement units. Sci. Rep. 2023, 13, 12638. [Google Scholar] [CrossRef]
- Bayer, M.; Kaufhold, M.-A.; Reuter, C. A Survey on Data Augmentation for Text Classification. ACM Comput. Surv. 2022, 55, 1–39. [Google Scholar] [CrossRef]
- Shorten, C.; Khoshgoftaar, T.M. A survey on image data augmentation for deep learning. J. Big Data 2019, 6, 60. [Google Scholar] [CrossRef]
- Wen, Q.; Sun, L.; Yang, F.; Song, X.; Gao, J.; Wang, X.; Xu, H. Time Series Data Augmentation for Deep Learning: A Survey. In Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, Montreal, QC, Canada, 19–26 August 2021. [Google Scholar]
- Trevethan, R. Sensitivity, Specificity, and Predictive Values: Foundations, Pliabilities, and Pitfalls in Research and Practice. Front. Public Health 2017, 5, 2296–2565. [Google Scholar] [CrossRef] [PubMed]
- Clopper, C.J.; Pearson, E.S. The Use of Confidence or Fiducial Limits Illustrated in the Case of the Binomial. Biometrika 1934, 26, 404–413. [Google Scholar] [CrossRef]
- Fahmy Amin, M. Confusion Matrix in Three-class Classification Problems: A Step-by-Step Tutorial. J. Eng. Res. 2023, 7, 26. [Google Scholar] [CrossRef]
- Maharana, K.; Mondal, S.; Nemade, B. A review: Data pre-processing and data augmentation techniques. Glob. Transit. Proc. 2022, 3, 91–99. [Google Scholar] [CrossRef]
- Elble, R.J.; Randall, J.E. Mechanistic components of normal hand tremor. Electroencephalogr. Clin. Neurophysiol. 1978, 44, 72–82. [Google Scholar] [CrossRef] [PubMed]
- Hossen, A. A neural network approach for feature extraction and discrimination between Parkinsonian tremor and essential tremor. Technol. Health Care Off. J. Eur. Soc. Eng. Med. 2013, 21, 345–356. [Google Scholar] [CrossRef]
- Aubin, P.M.; Serackis, A.; Griskevicius, J. Support vector machine classification of Parkinson’s disease, essential tremor and healthy control subjects based on upper extremity motion. In Proceedings of the International Conference on Biomedical Engineering and Biotechnology, Macau, China, 28–30 May 2012; pp. 900–904. [Google Scholar]
- Elble, R.J. Characteristics of physiologic tremor in young and elderly adults. Clin. Neurophysiol. 2003, 114, 624–635. [Google Scholar] [CrossRef]
- Hughes, A.J.; Daniel, S.E.; Kilford, L.; Lees, A.J. Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: A clinico-pathological study of 100 cases. J. Neurol. Neurosurgery Psychiatry 1992, 55, 181–184. [Google Scholar] [CrossRef]
- Hughes, A.J.; Daniel, S.E.; Lees, A.J. Improved accuracy of clinical diagnosis of Lewy body Parkinson’s disease. Neurology 2001, 57, 1497–1499. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, G.; Copetti, M.; Arcuti, S.; Martino, D.; Fontana, A.; Logroscino, G. Accuracy of clinical diagnosis of Parkinson disease: A systematic review and meta-analysis. Neurology 2016, 86, 566–576. [Google Scholar] [CrossRef] [PubMed]
- Gunning, D.; Aha, D. DARPA’s Explainable Artificial Intelligence (XAI) Program. AI Mag. 2019, 40, 44–58. [Google Scholar]
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).