A Survey of AI Techniques in IoT Applications with Use Case Investigations in the Smart Environmental Monitoring and Analytics in Real-Time IoT Platform
Abstract
:1. Introduction
2. Review of SEMAR IoT Application Server Platform
3. Literature Review on Use Cases of AI Techniques in IoT Applications
3.1. Methodology
3.2. Predictive Analytics
3.2.1. Overview
3.2.2. Use Cases in IoT Applications and Characteristics Overview
3.3. Image Classification
3.3.1. Introduction
3.3.2. Use Cases in IoT Applications and Characteristics Overview
3.4. Object Detection
3.4.1. Introduction
3.4.2. Use Cases in IoT Applications and Characteristics Overview
3.5. Text Spotting
3.5.1. Introduction
3.5.2. Use Cases in IoT Applications and Characteristics Overview
3.6. Auditory Perception
3.6.1. Introduction
3.6.2. Use Cases in IoT Applications and Characteristics Overview
3.7. Natural Language Processing
3.7.1. Introduction
3.7.2. Use Cases in IoT Applications and Characteristics Overview
3.8. Collaborative AI
3.8.1. Introduction
3.8.2. Use Cases in IoT Applications and Characteristics Overview
3.9. Integration of AI in IoT Platforms
- IoT applications: represents the use cases of the IoT applications that are implemented in each work.
- Device management: represents the ability to allow users to dynamically manage devices connected to the platform (Yes or No).
- Model management: represents the ability to manage multiple AI models, including adding and updating models (Yes or No).
- Support various AI techniques: indicates that the platform supports AI-driven capabilities across several techniques (Yes or No).
- Edge device integration: refers to the ability to deploy AI models to edge device systems (Yes or No).
- Data types: represents the specific types of data that can be handled by the platform.
4. Design of AI Techniques Integration in SEMAR
4.1. System Overview
4.2. AI Model Management
4.3. Real-Time and Batch AI Processing
4.4. AI Implementation in Edge Devices
5. Use Cases of Integration AI and IoT Applications in SEMAR
5.1. Drone-Based Building Monitoring System
5.2. Indoor Navigation System Using Unity and Smartphone
5.3. Air-Conditioning Guidance System
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gubbi, J.; Buyya, R.; Marusic, S.; Palaniswami, M. Internet of things (IoT): A Vision, Architectural Elements, and Future Directions. Future Gener. Comput. Syst. 2013, 29, 1645–1660. [Google Scholar] [CrossRef]
- Stankovic, J.A. Research Directions for the Internet of Things. IEEE Internet Things J. 2014, 1, 3–9. [Google Scholar] [CrossRef]
- Noura, M.; Atiquzzaman, M.; Gaedke, M. Interoperability in Internet of Things: Taxonomies and Open Challenges. Mob. Netw. Appl. 2018, 24, 796–809. [Google Scholar] [CrossRef]
- Panduman, Y.Y.F.; Funabiki, N.; Puspitaningayu, P.; Kuribayashi, M.; Sukaridhoto, S.; Kao, W.-C. Design and Implementation of SEMAR IoT Server Platform with Applications. Sensors 2022, 22, 6436. [Google Scholar] [CrossRef] [PubMed]
- Hassabis, D.; Kumaran, D.; Summerfield, C.; Botvinick, M. Neuroscience-inspired Artificial Intelligence. Neuron 2017, 95, 245–258. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Edwards, J.S.; Dwivedi, Y.K. Artificial Intelligence for Decision Making in the Era of Big Data—Evolution, Challenges and Research Agenda. Int. J. Inf. Manag. 2019, 48, 63–71. [Google Scholar] [CrossRef]
- Belgaum, M.R.; Alansari, Z.; Musa, S.; Mansoor Alam, M.; Mazliham, M.S. Role of Artificial Intelligence in Cloud Computing, IoT and SDN: Reliability and Scalability Issues. Int. J. Electr. Comput. Eng. (IJECE) 2021, 11, 4458. [Google Scholar] [CrossRef]
- Janbi, N.; Katib, I.; Mehmood, R. Distributed Artificial Intelligence: Taxonomy, Review, Framework, and Reference Architecture. Intell. Syst. Appl. 2023, 18, 200231. [Google Scholar] [CrossRef]
- Saleem, T.J.; Chishti, M.A. Deep Learning for the Internet of Things: Potential Benefits and Use-cases. Digit. Commun. Netw. 2021, 7, 526–542. [Google Scholar] [CrossRef]
- Panduman, Y.Y.F.; Funabiki, N.; Ito, S.; Husna, R.; Kuribayashi, M.; Okayasu, M.; Shimazu, J.; Sukaridhoto, S. An Edge Device Framework in SEMAR IoT Application Server Platform. Information 2023, 14, 312. [Google Scholar] [CrossRef]
- MongoDB, Mongodb: The Application Data Platform. Available online: https://www.mongodb.com/ (accessed on 22 February 2024).
- Zhang, J.; Tao, D. Empowering Things with Intelligence: A Survey of the Progress, Challenges, and Opportunities in Artificial Intelligence of Things. IEEE Internet Things J. 2021, 8, 7789–7817. [Google Scholar] [CrossRef]
- Talib, M.A.; Majzoub, S.; Nasir, Q.; Jamal, D. A Systematic Literature Review on Hardware Implementation of Artificial Intelligence Algorithms. J. Supercomput. 2020, 77, 1897–1938. [Google Scholar] [CrossRef]
- Abioye, S.O.; Oyedele, L.O.; Akanbi, L.; Ajayi, A.; Davila Delgado, J.M.; Bilal, M.; Akinade, O.O.; Ahmed, A. Artificial Intelligence in the Construction Industry: A Review of Present Status, Opportunities and Future Challenges. J. Build. Eng. 2021, 44, 103299. [Google Scholar] [CrossRef]
- Sarker, I.H. Machine Learning: Algorithms, Real-world Applications and Research Directions. SN Comput. Sci. 2021, 2, 160. [Google Scholar] [CrossRef]
- Alahi, M.E.; Sukkuea, A.; Tina, F.W.; Nag, A.; Kurdthongmee, W.; Suwannarat, K.; Mukhopadhyay, S.C. Integration of IoT-enabled Technologies and Artificial Intelligence (AI) for Smart City Scenario: Recent Advancements and Future Trends. Sensors 2023, 23, 5206. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V. Predictive Analytics: A Review of Trends and Techniques. Int. J. Comput. Appl. 2018, 182, 31–37. [Google Scholar] [CrossRef]
- Imran; Iqbal, N.; Ahmad, S.; Kim, D.H. Towards Mountain Fire Safety Using Fire Spread Predictive Analytics and Mountain Fire Containment in IoT Environment. Sustainability 2021, 13, 2461. [Google Scholar] [CrossRef]
- Hussain, A.; Draz, U.; Ali, T.; Tariq, S.; Irfan, M.; Glowacz, A.; Antonino Daviu, J.A.; Yasin, S.; Rahman, S. Waste Management and Prediction of Air Pollutants Using IoT and Machine Learning Approach. Energies 2020, 13, 3930. [Google Scholar] [CrossRef]
- Mumtaz, R.; Zaidi, S.M.; Shakir, M.Z.; Shafi, U.; Malik, M.M.; Haque, A.; Mumtaz, S.; Zaidi, S.A. Internet of Things (IoT) Based Indoor Air Quality Sensing and Predictive Analytic—A COVID-19 Perspective. Electronics 2021, 10, 184. [Google Scholar] [CrossRef]
- Barthwal, A.; Acharya, D. An IoT Based Sensing System for Modeling and Forecasting Urban Air Quality. Wirel. Pers. Commun. 2021, 116, 3503–3526. [Google Scholar] [CrossRef]
- Jin, X.B.; Gong, W.T.; Kong, J.L.; Bai, Y.T.; Su, T.L. A Variational Bayesian Deep Network with Data Self-screening Layer for Massive Time-series Data Forecasting. Entropy 2022, 24, 355. [Google Scholar] [CrossRef]
- Bampoula, X.; Siaterlis, G.; Nikolakis, N.; Alexopoulos, K. A Deep Learning Model for Predictive Maintenance in Cyber-Physical Production Systems Using LSTM Autoencoders. Sensors 2021, 21, 972. [Google Scholar] [CrossRef] [PubMed]
- Teoh, Y.K.; Gill, S.S.; Parlikad, A.K. IoT and Fog-computing-based Predictive Maintenance Model for Effective Asset Management in Industry 4.0 Using Machine Learning. IEEE Internet Things J. 2023, 10, 2087–2094. [Google Scholar] [CrossRef]
- Shorfuzzaman, M.; Hossain, M.S. Predictive Analytics of Energy Usage by IoT-based Smart Home Appliances for Green Urban Development. ACM Trans. Internet Technol. 2021, 22, 1–26. [Google Scholar] [CrossRef]
- Guo, N.; Chen, W.; Wang, M.; Tian, Z.; Jin, H. Appling an Improved Method Based on ARIMA Model to Predict the Short-term Electricity Consumption Transmitted by the Internet of Things (IoT). Wirel. Commun. Mob. Comput. 2021, 2021, 6610273. [Google Scholar] [CrossRef]
- Nancy, A.A.; Ravindran, D.; Raj Vincent, P.M.; Srinivasan, K.; Gutierrez Reina, D. IoT-cloud-based Smart Healthcare Monitoring System for Heart Disease Prediction via Deep Learning. Electronics 2022, 11, 2292. [Google Scholar] [CrossRef]
- Subahi, A.F.; Khalaf, O.I.; Alotaibi, Y.; Natarajan, R.; Mahadev, N.; Ramesh, T. Modified Self-Adaptive Bayesian Algorithm for Smart Heart Disease Prediction in IoT System. Sustainability 2022, 14, 14208. [Google Scholar] [CrossRef]
- Patrizi, G.; Bartolini, A.; Ciani, L.; Gallo, V.; Sommella, P.; Carratu, M. A Virtual Soil Moisture Sensor for Smart Farming Using Deep Learning. IEEE Trans. Instrum. Meas. 2022, 71, 1–11. [Google Scholar] [CrossRef]
- Kocian, A.; Carmassi, G.; Cela, F.; Chessa, S.; Milazzo, P.; Incrocci, L. IoT Based Dynamic Bayesian Prediction of Crop Evapotranspiration in Soilless Cultivations. Comput. Electron. Agric. 2023, 205, 107608. [Google Scholar] [CrossRef]
- Yu, Y.; Si, X.; Hu, C.; Zhang, J. A Review of Recurrent Neural Networks: LSTM Cells and Network Architectures. Neural Comput. 2019, 31, 1235–1270. [Google Scholar] [CrossRef]
- Schaffer, A.L.; Dobbins, T.A.; Pearson, S.-A. Interrupted Time Series Analysis Using Autoregressive Integrated Moving Average (ARIMA) Models: A Guide for Evaluating Large-scale Health Interventions. BMC Med. Res. Methodol. 2021, 21, 58. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, X.; Cao, X.; Huang, C.; Liu, E.; Qian, S.; Liu, X.; Wu, Y.; Dong, F.; Qiu, C.W.; et al. Artificial intelligence: A powerful paradigm for scientific research. Innovation 2021, 2, 100179. [Google Scholar] [CrossRef] [PubMed]
- Chouhan, S.S.; Singh, U.P.; Jain, S. Automated Plant Leaf Disease Detection and Classification Using Fuzzy Based Function Network. Wirel. Pers. Commun. 2021, 121, 1757–1779. [Google Scholar] [CrossRef]
- Munawar, H.S.; Ullah, F.; Qayyum, S.; Heravi, A. Application of Deep Learning on UAV-based Aerial Images for Flood Detection. Smart Cities 2021, 4, 1220–1243. [Google Scholar] [CrossRef]
- Abd Elaziz, M.; Mabrouk, A.; Dahou, A.; Chelloug, S.A. Medical Image Classification Utilizing Ensemble Learning and Levy Flight-based Honey Badger Algorithm on 6g-enabled Internet of Things. Comput. Intell. Neurosci. 2022, 2022, 5830766. [Google Scholar] [CrossRef]
- Saleh, A.Y.; Chin, C.K.; Penshie, V.; Al-Absi, H.R. Lung Cancer Medical Images Classification Using Hybrid CNN-SVM. Int. J. Adv. Intell. Inform. 2021, 7, 151. [Google Scholar] [CrossRef]
- Iyer, S.; Velmurugan, T.; Gandomi, A.H.; Noor Mohammed, V.; Saravanan, K.; Nandakumar, S. Structural Health Monitoring of Railway Tracks Using IoT-based Multi-robot System. Neural Comput. Appl. 2020, 33, 5897–5915. [Google Scholar] [CrossRef]
- Medus, L.D.; Saban, M.; Francés-Víllora, J.V.; Bataller-Mompeán, M.; Rosado-Muñoz, A. Hyperspectral Image Classification Using CNN: Application to Industrial Food Packaging. Food Control 2021, 125, 107962. [Google Scholar] [CrossRef]
- Zhou, X.; Xu, X.; Liang, W.; Zeng, Z.; Yan, Z. Deep-Learning-Enhanced Multitarget Detection for End–Edge–Cloud Surveillance in Smart IoT. IEEE Internet Things J. 2021, 8, 12588–12596. [Google Scholar] [CrossRef]
- Abdellatif, T.; Sedrine, M.A.; Gacha, Y. DroMOD: A Drone-Based Multi-Scope Object Detection System. IEEE Access 2023, 11, 26652–26666. [Google Scholar] [CrossRef]
- Lee, J.; Wang, J.; Crandall, D.; Šabanović, S.; Fox, G. Real-time, cloud-based object detection for unmanned aerial vehicles. In Proceedings of the 2017 First IEEE International Conference on Robotic Computing (IRC), Taichung, Taiwan, 10–12 April 2017; pp. 36–43. [Google Scholar]
- Meivel, S.; Sindhwani, N.; Anand, R.; Pandey, D.; Alnuaim, A.A.; Altheneyan, A.S.; Jabarulla, M.Y.; Lelisho, M.E. Mask Detection and Social Distance Identification Using Internet of Things and Faster R-CNN Algorithm. Comput. Intell. Neurosci. 2022, 2022, 2103975. [Google Scholar] [CrossRef] [PubMed]
- Yao, R.; Qi, P.; Hua, D.; Zhang, X.; Lu, H.; Liu, X. A Foreign Object Detection Method for Belt Conveyors Based on an Improved YOLOX Model. Technologies 2023, 11, 114. [Google Scholar] [CrossRef]
- Ali, L.; Alnajjar, F.; Parambil, M.M.; Younes, M.I.; Abdelhalim, Z.I.; Aljassmi, H. Development of YOLOv5-Based Real-Time Smart Monitoring System for Increasing Lab Safety Awareness in Educational Institutions. Sensors 2022, 22, 8820. [Google Scholar] [CrossRef] [PubMed]
- Baretto, A.; Pudussery, N.; Subramaniam, V.; Siddiqui, A. Real-Time WebRTC based Mobile Surveillance System. Int. J. Eng. Manag. Res. 2021, 11, 30–35. [Google Scholar] [CrossRef]
- Sredojev, B.; Samardzija, D.; Posarac, D. WebRTC technology overview and signaling solution design and implementation. In Proceedings of the 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija, Croatia, 25–29 May 2015; pp. 1006–1009. [Google Scholar] [CrossRef]
- Bassam, R.; Samann, F. Smart Parking System based on Improved OCR Model. IOP Conf. Ser. Mater. Sci. Eng. 2020, 978, 012007. [Google Scholar] [CrossRef]
- Wu, Z.; Chen, X.; Wang, J.; Wang, X.; Gan, Y.; Fang, M.; Xu, T. OCR-RTPS: An OCR-Based Real-time Positioning System for the Valet Parking. Appl. Intell. 2023, 53, 17920–17934. [Google Scholar] [CrossRef]
- Glasenapp, L.A.; Hoppe, A.F.; Wisintainer, M.A.; Sartori, A.; Stefenon, S.F. OCR Applied for Identification of Vehicles with Irregular Documentation Using IoT. Electronics 2023, 12, 1083. [Google Scholar] [CrossRef]
- Tham, M.L.; Tan, W.K. IoT Based License Plate Recognition System Using Deep Learning and OpenVINO. In Proceedings of the 2021 4th International Conference on Sensors, Signal and Image Processing, Nanjing, China, 15–17 October 2021; pp. 7–14. [Google Scholar]
- Ktari, J.; Frikha, T.; Hamdi, M.; Elmannai, H.; Hmam, H. Lightweight AI Framework for Industry 4.0 Case Study: Water Meter Recognition. Big Data Cogn. Comput. 2022, 6, 72. [Google Scholar] [CrossRef]
- Abdullah, R.; Ahmed, R.; Jamal, L. A Novel IoT-Based Medicine Consumption System for Elders. SN Comput. Sci. 2022, 3, 471. [Google Scholar] [CrossRef]
- Chang, J.; Ong, H.; Wang, T.; Chen, H.-H. A Fully Automated Intelligent Medicine Dispensary System Based on AIoT. IEEE Internet Things J. 2022, 9, 23954–23966. [Google Scholar] [CrossRef]
- Dilshad, N.; Ullah, A.; Kim, J.; Seo, J. LocateUAV: Unmanned Aerial Vehicle Location Estimation via Contextual Analysis in an IoT Environment. IEEE Internet Things J. 2023, 10, 4021–4033. [Google Scholar] [CrossRef]
- Promsuk, N.; Taparugssanagorn, A. Numerical Reader System for Digital Measurement Instruments Embedded Industrial Internet of Things. J. Commun. 2021, 16, 132–142. [Google Scholar] [CrossRef]
- Meng, J. Research on the Early Warning System of Cold Chain Cargo Based on OCR Technology. World J. Eng. Technol. 2022, 10, 527–538. [Google Scholar] [CrossRef]
- Cao, W.; Chen, Z.; Deng, X.; Wu, C.; Li, T. An Identification Method for Irregular Components Related to Terminal Blocks in Equipment Cabinet of Power Substation. Sensors 2023, 23, 7739. [Google Scholar] [CrossRef]
- Balia, R.; Giuliani, A.; Piano, L.; Pisu, A.; Saia, R.; Sansoni, N. A Comparison of Audio-Based Deep Learning Methods for Detecting Anomalous Road Events. Procedia Comput. Sci. 2022, 210, 198–203. [Google Scholar] [CrossRef]
- Yan, L.; Ko, S.-W. In-tunnel Accident Detection System based on the Learning of Accident Sound. Open Transp. J. 2021, 15, 81–92. [Google Scholar] [CrossRef]
- Ciaburro, G.; Iannace, G. Improving Smart Cities Safety Using Sound Events Detection Based on Deep Neural Network Algorithms. Informatics 2020, 7, 23. [Google Scholar] [CrossRef]
- Polo-Rodriguez, A.; Vilchez Chiachio, J.M.; Paggetti, C.; Medina-Quero, J. Ambient Sound Recognition of Daily Events by Means of Convolutional Neural Networks and Fuzzy Temporal Restrictions. Appl. Sci. 2021, 11, 6978. [Google Scholar] [CrossRef]
- Chhaglani, B.; Zakaria, C.; Lechowicz, A.; Gummeson, J.; Shenoy, P. FlowSense: Monitoring Airflow in Building Ventilation Systems Using Audio Sensing. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2022, 6, 1–26. [Google Scholar] [CrossRef]
- Tiwari, V. MFCC and Its Applications in Speaker Recognition. Int. J. Emerg. Technol. 2010, 1, 19–22. [Google Scholar]
- Giv, H.H. Directional Short-time Fourier Transform. J. Math. Anal. Appl. 2013, 399, 100–107. [Google Scholar] [CrossRef]
- Otter, D.W.; Medina, J.R.; Kalita, J.K. A Survey of the Usages of Deep Learning for Natural Language Processing. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32, 604–624. [Google Scholar] [CrossRef] [PubMed]
- Ismail, A.; Abdlerazek, S.; El-Henawy, I.M. Development of Smart Healthcare System Based on Speech Recognition Using Support Vector Machine and Dynamic Time Warping. Sustainability 2020, 12, 2403. [Google Scholar] [CrossRef]
- Froiz-Míguez, I.; Fraga-Lamas, P.; Fernández-CaraméS, T.M. Design, Implementation, and Practical Evaluation of a Voice Recognition Based IoT Home Automation System for Low-Resource Languages and Resource-Constrained Edge IoT Devices: A System for Galician and Mobile Opportunistic Scenarios. IEEE Access 2023, 11, 63623–63649. [Google Scholar] [CrossRef]
- Ali, A.A.; Mashhour, M.; Salama, A.S.; Shoitan, R.; Shaban, H. Development of an Intelligent Personal Assistant System Based on IoT for People with Disabilities. Sustainability 2023, 15, 5166. [Google Scholar] [CrossRef]
- Dweik, W.; Abdalla, M.; AlHroob, Y.; AlMajali, A.; Mustafa, S.A.; Abdel-Majeed, M. Skeleton of Implementing Voice Control for Building Automation Systems. Sci. Program. 2022, 2022, 6886086. [Google Scholar] [CrossRef]
- Juluru, K.; Shih, H.-H.; Keshava Murthy, K.N.; Elnajjar, P. Bag-of-Words Technique in Natural Language Processing: A Primer for Radiologists. RadioGraphics 2021, 41, 1420–1426. [Google Scholar] [CrossRef]
- Song, C.; Xu, W.; Han, G.; Zeng, P.; Wang, Z.; Yu, S. A Cloud Edge Collaborative Intelligence Method of Insulator String Defect Detection for Power IIoT. IEEE Internet Things J. 2021, 8, 7510–7520. [Google Scholar] [CrossRef]
- Li, M.; Li, Y.; Tian, Y.; Jiang, L.; Xu, Q. AppealNet: An Efficient and Highly Accurate Edge/Cloud Collaborative Architecture for DNN Inference. In Proceedings of the 2021 58th ACM/IEEE Design Automation Conference (DAC), San Francisco, CA, USA, 5–9 December 2021; pp. 409–414. [Google Scholar] [CrossRef]
- Chen, Y.-Y.; Lin, Y.-H.; Hu, Y.-C.; Hsia, C.-H.; Lian, Y.-A.; Jhong, S.-Y. Distributed Real-Time Object Detection Based on Edge-Cloud Collaboration for Smart Video Surveillance Applications. IEEE Access 2022, S10, 93745–93759. [Google Scholar] [CrossRef]
- Loseto, G.; Scioscia, F.; Ruta, M.; Gramegna, F.; Ieva, S.; Fasciano, C.; Bilenchi, I.; Loconte, D. Osmotic Cloud-Edge Intelligence for IoT-Based Cyber-Physical Systems. Sensors 2022, 22, 2166. [Google Scholar] [CrossRef]
- Bu, L.; Zhang, Y.; Liu, H.; Yuan, X.; Guo, J.; Han, S. An IIoT-Driven and AI-Enabled Framework for Smart Manufacturing System Based on Three-Terminal Collaborative Platform. Adv. Eng. Inform. 2021, 50, 101370. [Google Scholar] [CrossRef]
- Seshan, S.; Vries, D.; van Duren, M.; van Helm, A.; Poinapen, J. AI-Based Validation of Wastewater Treatment Plant Sensor Data Using an Open Data Exchange Architecture. IOP Conf. Ser. Earth Environ. Sci. 2023, 1136, 012055. [Google Scholar] [CrossRef]
- Cirillo, F.; Solmaz, G.; Berz, E.L.; Bauer, M.; Cheng, B.; Kovacs, E. A Standard-Based Open Source IoT Platform: FIWARE. IEEE Internet Things Mag. 2019, 2, 12–18. [Google Scholar] [CrossRef]
- Ramallo-Gonzalez, A.P.; Gonzalez-Vidal, A.; Skarmeta, A.F. CIoTVID: Towards an Open IoT-Platform for Infective Pandemic Diseases such as COVID-19. Sensors 2021, 21, 484. [Google Scholar] [CrossRef] [PubMed]
- Raj, E.; Buffoni, D.; Westerlund, M.; Ahola, K. Edge MLOps: An Automation Framework for AIoT Applications. In Proceedings of the 2021 IEEE International Conference on Cloud Engineering (IC2E), San Francisco, CA, USA, 4–8 October 2021; pp. 191–200. [Google Scholar] [CrossRef]
- Li, H.; Li, S.; Yu, J.; Han, Y.; Dong, A. AIoT Platform Design Based on Front and Rear End Separation Architecture for Smart Agricultural. In Proceedings of the 2022 4th Asia Pacific Information Technology Conference (APIT 2022), Virtual Event, Thailand, 14–16 January 2022; ACM: New York, NY, USA, 2022; pp. 208–214. [Google Scholar] [CrossRef]
- Rong, G.; Xu, Y.; Tong, X.; Fan, H. An edge-cloud collaborative computing platform for building AIoT applications efficiently. J. Cloud Comput. 2021, 10, 36. [Google Scholar] [CrossRef]
- Liang, Y.-C.; Wu, K.-R.; Tong, K.-L.; Ren, Y.; Tseng, Y.-C. An Exchange-based AIoT Platform for Fast AI Application Development. In Proceedings of the 19th ACM International Symposium on QoS and Security for Wireless and Mobile Networks, Montreal, QC, Canada, 30 October–3 November 2023; pp. 105–114. [Google Scholar] [CrossRef]
- Stavropoulos, G.; Violos, J.; Tsanakas, S.; Leivadeas, A. Enabling Artificial Intelligent Virtual Sensors in an IoT Environment. Sensors 2023, 23, 1328. [Google Scholar] [CrossRef]
- Panduman, Y.Y.F.; Funabiki, N.; Sukaridhoto, S. An Idea of Drone-Based Building Crack Detection System in SEMAR IoT Server Platform. In Proceedings of the 2023 IEEE 12th Global Conference on Consumer Electronics (GCCE) 2023, Nara, Japan, 10–13 October 2023. [Google Scholar] [CrossRef]
- University, “Crack Instance Segmentation Dataset (V2) by University,” Roboflow. Available online: https://universe.roboflow.com/university-bswxt/crack-bphdr/dataset/2 (accessed on 22 February 2024).
- Fajrianti, E.D.; Funabiki, N.; Sukaridhoto, S.; Panduman, Y.Y.F.; Dezheng, K.; Shihao, F.; Surya Pradhana, A.A. INSUS: Indoor Navigation System Using Unity and Smartphone for User Ambulation Assistance. Information 2023, 14, 359. [Google Scholar] [CrossRef]
- OpenWeatherMap. Current Weather and Forecast—OpenWeatherMap. Available online: https://openweathermap.org/ (accessed on 22 February 2024).
Ref. | Algorithms | Software Requirements | Data Types | Processing Methods | Computations | |
---|---|---|---|---|---|---|
Input | Output | |||||
[18] | ANN with PCR and Kalman filter | Python | Time-series data | Predicted area | Filtering and real-time data processing | Raspberry PI with 3.00 GB RAM |
[19] | LSTM | Python, TensorFlow | Time-series data | Predicted CO level | Real-time data processing | Google Cloud Server |
[20] | LSTM | - | Time-series data | Predicted air pollutants level | Real-time data processing | - |
[21] | ARIMA | - | Time-series data | Predicted AQI | Real-time data processing | IBM Cloud |
[22] | Bayesian Network | Python | Time-series data | Predicted PM2.5 level | Missing data handling, data normalization, and data correlations | AMD R7-5800 processor 4.0 GHz with 16 GB of RAM |
[23] | LSTM | Python, TensorFlow | Time-series data | Predicted machine states | Data transformation and real-time data processing | Intel CoreTM i7 CPU with 8.00 GB RAM |
[24] | Logistic Regression | Azure Machine Learning REST API services | Time-series data | Predicted equipment health states | Real-time data processing | Azure Machine Learning |
[25] | LSTM and ARIMA | Python, TensorFlow | Time-series data | Predicted energy consumption | Missing data handling, outlier detection, data transformation | Intel CoreTM i7 CPU with 8.00 GB RAM |
[26] | ARIMA and SVR | Python | Time-series data | Predicted electric consumption | Missing data handling, data normalization, and data correlations | Intel Core i5 CPU with 8.00 GB RAM |
[27] | Bidirectional LSTM | Python, TensorFlow | Time-series data | Predicted diagnosis of heart disease | Data Filtering | i2k2 Cloud platform |
[28] | Self-Adaptive Bayesian | - | Time-series data | Predicted diagnosis of heart disease | Data normalization | - |
[29] | LSTM | Python, TensorFlow | Time-series data | Predicted soil moisture | Data correlations and data synchronization | - |
[30] | Dynamic Bayesian | MATLAB™ | Time-series data | Predicted ET value | Real-time data processing | - |
Ref. | Algorithms | Software Requirements | Data Types | Processing Methods | Computations | |
---|---|---|---|---|---|---|
Input | Output | |||||
[34] | FBFN | Python and OpenCV | Captured images | Leaf gall detection (Boolean) | Image pre-processing, feature extraction, hyperparameters optimization, and real-time data processing | - |
[35] | CNN | Python, OpenCV, and TensorFlow | Captured images | Flooded detection (Boolean) | Image pre-processing | Intel Core i7 CPU |
[36] | Deep learning (MobileNetV2 and DenseNet169) | Python, OpenCV, and TensorFlow | Medical images | Medical diagnostic classes | Feature extraction, feature selection, and REST API services | - |
[37] | The hybrid of CNN and SVM | Python, OpenCV, and TensorFlow | Medical images | Lung cancer classes | Hyperparameters optimization | Intel Core i5 CPU with 16.00 GB of RAM and NVIDIA GeForce RTX 2060 GPU |
[38] | CNN | Python, OpenCV, and TensorFlow | Captured images | Fracture detection (Boolean) | Image pre-processing and feature extraction | Raspberry Pi 3 |
[39] | CNN | Python, OpenCV, TensorFlow, and Keras | Captured images | Failure detection (Boolean) | Hyperparameters optimization | Intel Core i7 CPU with 8.00 GB of RAM |
Ref. | Algorithms | Software Requirements | Data Types | Processing Methods | Computations | |
---|---|---|---|---|---|---|
Input | Output | |||||
[40] | Integration of YOLOv3 and Multitask CNN (MTCNN) | Python, TensorFlow, CUDA, and OpenCV | Captured images | Images with bounding box, class labels, and confidence scores | Real-time data processing | Jetson TX1 with 6.00 GB RAM and NVIDIA Maxwell GPU |
[41] | YOLOv5 | Python with PyTorch, Apache Kafka, Apache Flink and CUDA | Captured images | Images with bounding box, class labels, and confidence scores | Real-time data processing, batch processing, and dynamic model deployment | Intel Core i7 CPU with 8.00 GB RAM |
[42] | Faster R-CNN | Python with PyTorch and OpenCV | Captured images | Images with bounding box, class labels, and confidence scores | Real-time data processing | Intel Xeon E5-2680 v3 with 128.00 GB and Nvidia Tesla K40 GPU |
[43] | Faster R-CNN and YOLOv3 | Python with PyTorch, TensorFlow, CUDA, Keras, and OpenCV | Captured images | Images with bounding box, class labels, and confidence scores | Image pre-processing | - |
[44] | YOLOX | Python with PyTorch, CUDA, and OpenCV | Captured images | Images with bounding box, class labels, and confidence scores | Image enhancement and feature enhancement | Intel Core i9 CPU with16.00 GB RAM and NVIDIA RTX A4000 GPU |
[45] | YOLOv5 | Python, TensorFlow, CUDA, and OpenCV | Captured images | Images with bounding box, class labels, and confidence scores | Real-time data processing | Intel XEON E5-2698 v4 with NVIDIA DGX-1 GPU |
[46] | YOLOv3 | Python, OpenCV, CUDA, and WebRTC | Captured images | Images with bounding box, class labels, and confidence scores | Real-time data processing | Intel Core i7 CPU with Nvidia GTX 1050 GPU |
Ref. | Algorithms | Software Requirements | Data Types | Processing Methods | Computations | |
---|---|---|---|---|---|---|
Input | Output | |||||
[48] | OCR model | LabView | Captured images | Recognized text | Image pre-processing, segmentation, and morphology filters | - |
[49] | ABCNet OCR | Python, PyTorch, and OpenCV | Captured images | Recognized text | Object detection, anomaly filter module, and real-time data processing | - |
[50] | OCR model by OpenALPR API | Python, OpenCV, and OpenALPR API | Captured images | Recognized text | Object Detection, Image pre-processing, feature extraction, segmentation, and real-time data processing | Intel Core i5 CPU with 20.00 GB of RAM and Nvidia GTX 1050 GPU |
[51] | Tesseract OCR | Python, OpenCV, CUDA, and TensorFlow | Captured images | Recognized text | Object Detection, Image pre-processing, geofencing, segmentation, and real-time data processing | UP Squared AI Edge X Intel Atom CPU with Intel Movidius Myriad VPU |
[52] | Tesseract OCR | Python, OpenCV, CUDA, and TensorFlow | Captured images | Recognized text | Object detection and real-time data processing | - |
[53] | EasyOCR with BiLSTM | Python, OpenCV, and TensorFlow | Captured images | Recognized text | Image pre-processing and real-time data processing | AMD Ryzen 5900x CPU with 64.00 GB of RAM and NVIDIA RTX 3080 GPU |
[54] | PP-OCR | Python and OpenCV | Captured images | Recognized text | Image pre-processing and parameters optimization | Intel Xeon i5 CPU with 16.00 GB of RAM |
[55] | EasyOCR | Python, OpenCV, and PyTorch | Captured images | Recognized text | Object detection, image pre-processing, and real-time data processing | Intel Core i7 CPU with 32.00 GB of RAM and Nvidia RTX 2060 Super GPU |
[56] | Neural Network | Python | Captured images | Recognized text | Image pre-processing, feature extraction, and real-time data processing | Intel Core i5 CPU with 8.00 GB of RAM |
[57] | OCR model | Python and OpenCV | Captured images | Recognized text | Video pre-processing and real-time data processing | - |
[58] | Paddle OCR | Python, PyTorch, and OpenCV | Captured images | Recognized text | Object detection, feature extraction, and segmentation | AMD Ryzen 9 with 32.00 GB of RAM and NVIDIA GeForce RTX 3080 |
Ref. | Algorithms | Software Requirements | Data Types | Processing Methods | Computations | |
---|---|---|---|---|---|---|
Input | Output | |||||
[59] | STFT, CNN, FCNN, and Bi-LSTM | Python, TensorFlow, and Keras | Audio spectrograms | Dangerous event classes | Audio pre-processing, feature extraction, and hyperparameter optimization | 32.00 GB RAM with Nvidia GeForce GTX 1060 Max |
[60] | MFCCs and DNN | Python, TensorFlow and Keras | Audio spectrograms | Accident event classes | Audio pre-processing and feature extraction | Intel Core i5 CPU with 16.00 GB RAM |
[61] | CNN | Python and TensorFlow | Audio spectrograms | UAV state classes (Boolean) | Feature extraction | - |
[62] | MFCCs and CNN | Python and Keras | Audio spectrograms | Daily living activities classes | Feature extraction and real-time processing | Raspberry Pi |
[63] | XGBoost Regressions | Python and Java | Audio in frequency domain | Predicted Air Flow Rate | Filtering and data transformation | Android Mobile Phone |
Ref. | Algorithms | Software Requirements | Data Types | Processing Methods | Computations | |
---|---|---|---|---|---|---|
Input | Output | |||||
[67] | SVM with a Dynamic Time Warping (DTW) algorithm | Python and Java | User‘s speech audio | Command recognized (string) | Speech recognition and device control | Raspberry Pi |
[68] | Wav2vec2, Whisper, and BERT models | Python and TensorFlow | User‘s speech audio | Command recognized (string) | Speech recognition, device control, model optimization | Raspberry Pi 4 with 2 GB of RAM |
[69] | Google Speech API, NLP model, and Logistic Regression | Python, NLTK, and TensorFlow | User‘s speech audio | Command recognized (string) | Speech recognition and device control | Intel Core i5 CPU with 16.00 GB of RAM and NVIDIA GeForce 830 GPU |
[70] | Google Speech API and NLP model using Bag-of-Words (BoW) approach | Python, NLTK, and TensorFlow | User‘s speech audio | Command recognized (string) | Speaker verification, speech recognition, and device control. | - |
Ref. | Algorithms | Software Requirements | Data Types | Processing Methods | Computations | |
---|---|---|---|---|---|---|
Input | Output | |||||
[72] | Faster RCNN (UAV), Up-Net Model (cloud) | Python, TensorFlow, Keras, OpenCV and Caffe | Captured images (UAV and cloud) | Images with bounding box (UAV and cloud) | Image pre-processing, image rotation and segmentation on the cloud, image detection on UAVs, and real-time data processing | PC Server with NVIDIA GeForce RTX 2080 Ti (Server) |
[73] | DNN | Python and PyTorch | Captured images | Image classes | Image difficulty prediction and model optimizations | - |
[74] | YOLOv3 | Python, PyTorch, and OpenCV | Captured images | Images with bounding box, class labels, and confidence scores | Real-time data processing and model update capabilities | NVIDIA Jetson Xavier NX (Edge) and Intel Core i7 CPU with 32.00 GB of RAM and Nvidia RTX 2080 GPU (Cloud) |
[72] | Multi-layer perceptron regressor | Python, Apache Kafka, TensorFlow and Keras | Time-series data | Predicted amount of silica | Real-time data processing and model update capabilities | Raspberry Pi 4 Model B with 4.00 GB of RAM (Edge) and Intel Xeon CPU E5-2673 with 32.00 GB of RAM (Cloud) |
Ref. | IoT Application | Device Management | Model Management | Support Various AI Techniques | Edge Devices Integration | Data Types |
---|---|---|---|---|---|---|
[76] | Smart Manufacturing | ✓ | ✗ | ✓ | ✗ | Common data types |
[78] | Smart Environments | ✓ | ✗ | ✗ | ✗ | Common data types |
[79] | Smart Healthcare | ✓ | ✗ | ✓ | ✗ | Common data types |
[80] | Various IoT applications | ✓ | ✓ | ✗ | ✓ | Common data types |
[81] | Smart Agriculture | ✓ | ✓ | ✗ | ✓ | Common data types and image |
[82] | Various IoT Applications | ✓ | ✓ | ✗ | ✓ | Common data types and image |
[83] | Various IoT Applications | ✓ | ✓ | ✓ | ✗ | Common data types, image and audio |
[84] | Smart Homes and Environments | ✓ | ✗ | ✗ | ✗ | Common data types |
Our Work | Various IoT applications | ✓ | ✓ | ✓ | ✓ | Common data types, image and audio |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panduman, Y.Y.F.; Funabiki, N.; Fajrianti, E.D.; Fang, S.; Sukaridhoto, S. A Survey of AI Techniques in IoT Applications with Use Case Investigations in the Smart Environmental Monitoring and Analytics in Real-Time IoT Platform. Information 2024, 15, 153. https://doi.org/10.3390/info15030153
Panduman YYF, Funabiki N, Fajrianti ED, Fang S, Sukaridhoto S. A Survey of AI Techniques in IoT Applications with Use Case Investigations in the Smart Environmental Monitoring and Analytics in Real-Time IoT Platform. Information. 2024; 15(3):153. https://doi.org/10.3390/info15030153
Chicago/Turabian StylePanduman, Yohanes Yohanie Fridelin, Nobuo Funabiki, Evianita Dewi Fajrianti, Shihao Fang, and Sritrusta Sukaridhoto. 2024. "A Survey of AI Techniques in IoT Applications with Use Case Investigations in the Smart Environmental Monitoring and Analytics in Real-Time IoT Platform" Information 15, no. 3: 153. https://doi.org/10.3390/info15030153
APA StylePanduman, Y. Y. F., Funabiki, N., Fajrianti, E. D., Fang, S., & Sukaridhoto, S. (2024). A Survey of AI Techniques in IoT Applications with Use Case Investigations in the Smart Environmental Monitoring and Analytics in Real-Time IoT Platform. Information, 15(3), 153. https://doi.org/10.3390/info15030153