Social Network Community Detection to Deal with Gray-Sheep and Cold-Start Problems in Music Recommender Systems
Abstract
:1. Introduction
1.1. Context and Objectives of the Work
- The proposal of a graph-based and rating-based user similarity metric derived from the social network structure that captures homophily between users as well as user similarity in terms of preferences.
- The integration of this similarity metric into a user-based collaborative filtering approach that significantly improves the reliability of recommendations in the context of cold-start and gray-sheep problems.
1.2. Privacy and Ethical Considerations
2. Related Work
3. Materials and Methods
3.1. Rating-Social Hybrid Similarity
3.2. RSH-Based User k-NN Collaborative Filtering Approach
3.3. Gray-Sheep and Cold-Start Scenarios
4. Validation of the Recommendation Approach
4.1. Datasets
4.2. Experimental Study
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Breese, J.S.; Heckerman, D.; Kadie, C. Empirical analysis of predictive algorithms for collaborative filtering. In Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence, Madison, WI, USA, 24–26 July 1998; pp. 43–52. [Google Scholar]
- Aggarwal, C.C. Recommender Systems. In The Testbook; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Van den Oord, A.; Dieleman, S.; Schrauwen, B. Deep content-based music recommendation. Adv. Neural Inf. Process. Syst. 2013, 26, 2643–2651. [Google Scholar]
- Claypool, M.; Gokhale, A.; Mir, T.; Murnikov, P.; Netes, D.; Sartin, M. Combining content-based and collaborative filters in an online newspaper. In Proceedings of the ACM SIGIR Workshop on Recommender Systems, Berkeley, CA, USA, 19 September 1999; ACM: New York, NY, USA, 1999. [Google Scholar]
- Yoshii, K.; Goto, M.; Komatani, K.; Ogata, T.; Okuno, H.G. Hybrid collaborative and content-based music recommendation using probabilistic model with latent user preferences. In Proceedings of the 7th International Conference on Music Information Retrieval, Victoria, BC, Canada, 8–12 October 2006; University of Victoria: Victoria, BC, Canada, 2006; pp. 296–301. [Google Scholar]
- Kuo, F.F.; Shan, M.K. A personalized music filtering system based on melody style classification. In Proceedings of the IEEE International Conference on Data Mining, Maebashi City, Japan, 9–12 December 2002; pp. 649–652. [Google Scholar]
- Chen, H.-C.; Chen, A.L.P. A music recommendation system based on music and user grouping. J. Intell. Inf. Syst. 2005, 24, 113–132. [Google Scholar] [CrossRef]
- Cantador, I.; Bellogín, A.; Castells, P. A multilayer ontology-based hybrid recommendation model. AI Commun. 2008, 21, 203–210. [Google Scholar] [CrossRef]
- Hassani, H.; Komendantova, N.; Rovenskaya, E.; Yeganegi, M.R. Social Intelligence Mining: Unlocking Insights from X. Mach. Learn. Knowl. Extr. 2023, 5, 1921–1936. [Google Scholar] [CrossRef]
- Dolgikh, D. Graph-based music recommendation approach using social network analysis and community detection method. In Proceedings of the International Conference on Computer Systems and Technologies, Santiago, Chile, 7–13 December 2015; ACM: New York, NY, USA, 2015; pp. 221–227. [Google Scholar]
- Wang, F.; Hu, L.; Sun, R.; Hu, J.; Zhao, K. SRMCS: A semantic aware recommendation framework for mobile crowd sensing. Inf. Sci. 2018, 433–434, 333–345. [Google Scholar] [CrossRef]
- Sánchez-Moreno, D.; López, V.F.; Muñoz, M.D.; Sánchez, A.L.; Moreno, M.N. Exploiting the user social context to address neighborhood bias in collaborative filtering music recommender systems. Information 2020, 11, 439. [Google Scholar] [CrossRef]
- Chen, J.; Ying, P.; Zou, M. Improving music recommendation by incorporating social influence. Multimed. Tools Appl. 2019, 78, 2667–2687. [Google Scholar] [CrossRef]
- Fields, B.; Jacobson, K.; Rhodes, C.; Inverno, M.; Sanler, M.; Casey, M. Analysis and exploitation of musician social networks for recommendation and discovery. IEEE Trans. Multimed. 2011, 13, 674–686. [Google Scholar] [CrossRef]
- Kiss, C.; Bichler, M. Identification of influencers—Measuring influence in customer networks. Decis. Support Syst. 2008, 46, 233–253. [Google Scholar] [CrossRef]
- Chen, R.; Pang, K.; Huang, M.; Liang, H.; Zhang, S.; Zhang, L.; Li, P.; Xia, Z.; Zhang, J.; Kong, X. A Survey on Recommendation Methods Based on Social Relationships. Electronics 2023, 12, 4564. [Google Scholar] [CrossRef]
- Esmaeili, L.; Mardani, S.; Golpayegani, S.-A.H.; Madar, Z.Z. A novel tourism recommender system in the context of social commerce. Expert Syst. Appl. 2020, 149, 113301. [Google Scholar] [CrossRef]
- Zhou, Z.; Xu, K.; Zhao, J. Homophily of music listening in online social networks of China. Soc. Netw. 2018, 55, 160–169. [Google Scholar] [CrossRef]
- Yi, H.; Liu, J.; Xu, W.; Li, X.; Qian, H. A Graph Neural Network Social Recommendation Algorithm Integrating the Multi-Head Attention Mechanism. Electronics 2023, 12, 1477. [Google Scholar] [CrossRef]
- Chizari, N.; Shoeibi, N.; Moreno-García, M.N. A Comparative Analysis of Bias Amplification in Graph Neural Network Approaches for Recommender Systems. Electronics 2022, 11, 3301. [Google Scholar] [CrossRef]
- Di Noia, T.; Tintarev, N.; Fatourou, P.; Schedl, M. Recommender systems under European AI regulations. Commun. ACM 2022, 65, 69–73. [Google Scholar] [CrossRef]
- Villegas-Ch, W.; García-Ortiz, J. Toward a Comprehensive Framework for Ensuring Security and Privacy in Artificial Intelligence. Electronics 2023, 12, 3786. [Google Scholar] [CrossRef]
- Chung, K.C.; Chen, C.H.; Tsai, H.H.; Chuang, Y.H. Social Media Privacy Management Strategies: A SEM Analysis of User Privacy Behaviors. Comput. Commun. 2021, 174, 122–130. [Google Scholar] [CrossRef]
- Schneider, S.; Leyer, M. Me or information technology? Adoption of artificial intelligence in the delegation of personal strategic decisions. Manag. Decis. Econ. 2019, 40, 223–231. [Google Scholar] [CrossRef]
- Jia, J.; Liu, P.; Chen, W. Improved Matrix Factorization Algorithm Using Social Information for Recommendation. Comput. Eng. 2021, 47, 97–105. [Google Scholar]
- Chizari, N.; Tajfar, K.; Moreno-García, M.N. Bias Assessment Approaches for Addressing User-Centered Fairness in GNN-Based Recommender Systems. Information 2023, 14, 131. [Google Scholar] [CrossRef]
- Ma, H.; Yang, H.; Lyu, M.R.; King, I. SoRec: Social recommendation using probabilistic matrix factorization. In Proceedings of the CIKM08: Conference on Information and Knowledge Management, Napa Valley, CA, USA, 26–30 October 2008; pp. 931–940. [Google Scholar]
- Bin, S.; Sun, G. Collaborative Filtering Recommendation Algorithm Based on Multi-relationship Social Network. Comput. Sci. 2019, 46, 56–62. [Google Scholar] [CrossRef]
- Zhu, L.; Xu, C.; Guan, J.; Zhang, H. SEM-PPA. A semantical pattern and preference-aware service mining method for personalized point of interest recommendation. J. Netw. Comput. Appl. 2017, 82, 35–46. [Google Scholar] [CrossRef]
- Guo, G.; Zhang, J.; Yorke-Smith, N. TrustSVD: Collaborative Filtering with Both the Explicit and Implicit Influence of User Trust and of Item Ratings. In Proceedings of the AAAI’15: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, Austin, TX, USA, 25–30 January 2015; pp. 123–129. [Google Scholar]
- Yang, B.; Lei, Y.; Liu, J.; Li, W. Social Collaborative Filtering by Trust. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1633–1647. [Google Scholar] [CrossRef] [PubMed]
- Bi, Z.; Jing, L.; Shan, M.; Dou, S.; Wang, S.; Yang, X. Hierarchical Social Recommendation Model Based on a Graph Neural Network. Wirel. Commun. Mob. Comput. 2021, 9107718. [Google Scholar] [CrossRef]
- Chang, J.; Gao, C.; Zheng, Y.; Hui, Y.; Niu, Y.; Song, Y.; Jin, D.; Li, Y. Sequential Recommendation with Graph Neural Networks. In Proceedings of the SIGIR’21: The 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, Virtual Event, 11–15 July 2021; pp. 378–387. [Google Scholar]
- Zhou, H.; Liu, J.; Wang, H. A Social Movie Recommendation Model Based on Graph Neural Network and Tag Overlapping Community. Inf. Stud. Theory Appl. 2021, 44, 164–170. [Google Scholar]
- Chen, Z.; Li, H.; Du, J. Research on Recommendation Algorithm Based on Heterogeneous Graph neural Network. J. Hunan Univ. Nat. Sci. 2021, 48, 137–144. [Google Scholar]
- Panda, D.K.; Ray, S. Approaches and algorithms to mitigate cold start problems in recommender systems: A systematic literature review. J Intell. Inf. Syst. 2022, 59, 341–366. [Google Scholar] [CrossRef]
- Camacho, L.A.G.; Alves-Souza, S.N. Social network data to alleviate cold-start in recommender system: A systematic review. Inf. Process. Manag. 2018, 54, 529–544. [Google Scholar] [CrossRef]
- Abel, F.; Herder, E.; Houben, G.J.; Henze, N.; Krause, D. Cross-system user modeling and personalization on the social web. User Model. User-Adapt. Interact. 2013, 23, 169–209. [Google Scholar] [CrossRef]
- Nie, D.C.; Zhang, Z.K.; Dong, Q.; Sun, C.; Fu, Y. Information filtering via biased random walk on coupled social network. Sci. World J. 2014, 829137. [Google Scholar] [CrossRef]
- Ahmadian, S.; Afsharchi, M.; Meghdadi, M. An effective social recommendation method based on user reputation model and rating profile enhancement. J. Inf. Sci. 2019, 45, 607–642. [Google Scholar] [CrossRef]
- Chen, C.C.; Wan, Y.H.; Chung, M.C.; Sun, Y.C. An effective recommendation method for cold start new users using trust and distrust networks. Inf. Sci. 2013, 224, 19–36. [Google Scholar] [CrossRef]
- Guo, G.; Zhang, J.; Thalmann, D. Merging trust in collaborative filtering to alleviate data sparsity and cold start. Knowl.-Based Syst. 2014, 57, 57–68. [Google Scholar] [CrossRef]
- Ghavipour, M.; Meybodi, M.R. Stochastic trust network enriched by similarity relations to enhance trust-aware recommendations. Appl. Intell. 2019, 49, 435–448. [Google Scholar] [CrossRef]
- Srivastava, A.; Bala, P.K.; Kumar, B. New perspectives on gray sheep behavior in E-commerce recommendations. J. Retail. Consum. Serv. 2020, 53, 101764. [Google Scholar] [CrossRef]
- Ghazanfar, M.A.; Prügel-Bennett, A. Leveraging clustering approaches to solve the gray-sheep users problem in recommender systems. Expert Syst. Appl. 2014, 41, 3261–3272. [Google Scholar] [CrossRef]
- Kim, M.; Im, I. Resolving the ‘gray sheep’ problem using social network analysis (SNA) in collaborative filtering (CF) recommender systems. J. Intell. Inf. Syst. 2014, 20, 137–148. [Google Scholar]
- Leicht, E.A.; Holme, P.; Newman, M.E.J. Vertex similarity in networks. Phys. Rev. 2006, E 73, 026120. [Google Scholar] [CrossRef]
- Everett, M.G.; Borgatti, S.P. Two algorithms for computing regular equivalence. Soc. Netw. 1993, 15, 361–376. [Google Scholar]
- Pacula, M. A Matrix Factorization Algorithm for Music Recommendation Using Implicit User Feedback. Available online: http://www.mpacula.com/publications/lastfm.pdf (accessed on 18 December 2023).
- Sánchez-Moreno, D.; Muñoz, M.D.; López, V.F.; Gil, A.B.; Moreno-García, M.N. A session-based song recommendation approach involving user characterization along the play power-law distribution. Complexity 2020, 7309453. [Google Scholar] [CrossRef]
- Cantador, I.; Brusilovsky, P.; Kuflik, T. 2nd Hetrec workshop. In Proceedings of the 5th ACM Conference on Recommender Systems, RecSys, New York, NY, USA, 23–27 October 2011. [Google Scholar]
Scenario | Method | NMAE | NRMSE | MAP | NDCG |
---|---|---|---|---|---|
Gray sheep 5% | Matrix Factorization | 0.274 | 0.294 | 0.630 | 0.768 |
Item k-NN | 0.286 | 0.305 | 0.614 | 0.751 | |
user k-NN | 0.276 | 0.344 | 0.709 | 0.769 | |
SCC | 0.261 | 0.326 | 0.691 | 0.773 | |
SSW | 0.262 | 0.325 | 0.698 | 0.776 | |
SSM | 0.189 | 0.267 | 0.721 | 0.768 | |
RSH-based user k-NN | 0.163 | 0.247 | 0.780 | 0.831 | |
Gray sheep 10% | Matrix Factorization | 0.254 | 0.280 | 0.610 | 0.739 |
Item k-NN | 0.273 | 0.293 | 0.595 | 0.719 | |
user k-NN | 0.274 | 0.346 | 0.666 | 0.736 | |
SCC | 0.261 | 0.323 | 0.649 | 0.744 | |
SSW | 0.262 | 0.323 | 0.653 | 0.744 | |
SSM | 0.220 | 0.291 | 0.652 | 0.754 | |
RSH-based user k-NN | 0.206 | 0.297 | 0.712 | 0.773 | |
Gray sheep 15% | Matrix Factorization | 0.239 | 0.266 | 0.597 | 0.725 |
Item k-NN | 0.262 | 0.285 | 0.590 | 0.706 | |
user k-NN | 0.269 | 0.335 | 0.659 | 0.733 | |
SCC | 0.257 | 0.316 | 0.653 | 0.744 | |
SSW | 0.258 | 0.318 | 0.656 | 0.744 | |
SSM | 0.241 | 0.285 | 0.647 | 0.748 | |
RSH-based user k-NN | 0.234 | 0.316 | 0.685 | 0.750 | |
Cold start | Matrix Factorization | 0.235 | 0.258 | 0.647 | 0.751 |
Item k-NN | 0.240 | 0.262 | 0.641 | 0.748 | |
user k-NN | 0.238 | 0.311 | 0.693 | 0.748 | |
SCC | 0.248 | 0.315 | 0.450 | 0.640 | |
SSW | 0.248 | 0.315 | 0.459 | 0.635 | |
SSM | 0.211 | 0.285 | 0.495 | 0.648 | |
RSH-based user k-NN | 0.147 | 0.231 | 0.788 | 0.830 |
Scenario | Method | Improv. NMAE | Improv. MAP | Improv. NDCG |
---|---|---|---|---|
Gray sheep 5% | Matrix Factorization | 40.5% | 23.8% | 31.9% |
Item k-NN | 43.0% | 27.1% | 35.4% | |
user k-NN | 41.0% | 10.1% | 17.3% | |
SCC | 37.6% | 12.9% | 7.5% | |
SSW | 37.9% | 11.8% | 7.1% | |
SSM | 13.9% | 8.2% | 8.2% | |
Gray sheep 10% | Matrix Factorization | 19.0% | 16.7% | 26.6% |
Item k-NN | 24.5% | 19.6% | 29.8% | |
user k-NN | 24.9% | 6.9% | 16.0% | |
SCC | 21.1% | 9.7% | 3.9% | |
SSW | 21.4% | 9.0% | 3.9% | |
SSM | 6.4% | 9.2% | 2.5% | |
Gray sheep 15% | Matrix Factorization | 2.1% | 14.9% | 25.8% |
Item k-NN | 10.8% | 16.3% | 27.3% | |
user k-NN | 13.0% | 4.0% | 13.9% | |
SCC | 8.9% | 5.0% | 0.9% | |
SSW | 9.3% | 4.5% | 0.9% | |
SSM | 2.9% | 5.9% | 0.3% | |
Cold start | Matrix Factorization | 37.7% | 21.8% | 28.3% |
Item k-NN | 38.7% | 22.9% | 29.5% | |
user k-NN | 38.2% | 13.7% | 19.8% | |
SCC | 40.8% | 75.1% | 29.7% | |
SSW | 40.8% | 71.7% | 30.7% | |
SSM | 30.4% | 59.2% | 28.1% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-Moreno, D.; López Batista, V.F.; Muñoz Vicente, M.D.; Sánchez Lázaro, Á.L.; Moreno-García, M.N. Social Network Community Detection to Deal with Gray-Sheep and Cold-Start Problems in Music Recommender Systems. Information 2024, 15, 138. https://doi.org/10.3390/info15030138
Sánchez-Moreno D, López Batista VF, Muñoz Vicente MD, Sánchez Lázaro ÁL, Moreno-García MN. Social Network Community Detection to Deal with Gray-Sheep and Cold-Start Problems in Music Recommender Systems. Information. 2024; 15(3):138. https://doi.org/10.3390/info15030138
Chicago/Turabian StyleSánchez-Moreno, Diego, Vivian F. López Batista, María Dolores Muñoz Vicente, Ángel Luis Sánchez Lázaro, and María N. Moreno-García. 2024. "Social Network Community Detection to Deal with Gray-Sheep and Cold-Start Problems in Music Recommender Systems" Information 15, no. 3: 138. https://doi.org/10.3390/info15030138
APA StyleSánchez-Moreno, D., López Batista, V. F., Muñoz Vicente, M. D., Sánchez Lázaro, Á. L., & Moreno-García, M. N. (2024). Social Network Community Detection to Deal with Gray-Sheep and Cold-Start Problems in Music Recommender Systems. Information, 15(3), 138. https://doi.org/10.3390/info15030138